Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by T Kawashima
Total Records ( 3 ) for T Kawashima
  Y Inuzuka , J Okuda , T Kawashima , T Kato , S Niizuma , Y Tamaki , Y Iwanaga , Y Yoshida , R Kosugi , K Watanabe Maeda , Y Machida , S Tsuji , H Aburatani , T Izumi , T Kita and T. Shioi
 

Background— Heart failure is a typical age-associated disease. Although age-related changes of heart are likely to predispose aged people to heart failure, little is known about the molecular mechanism of cardiac aging.

Methods and Results— We analyzed age-associated changes in murine heart and the manner in which suppression of the p110 isoform of phosphoinositide 3-kinase activity modified cardiac aging. Cardiac function declined in old mice associated with the expression of senescence markers. Accumulation of ubiquitinated protein and lipofuscin, as well as comprehensive gene expression profiling, indicated that dysregulation of protein quality control was a characteristic of cardiac aging. Inhibition of phosphoinositide 3-kinase preserved cardiac function and attenuated expression of the senescence markers associated with enhanced autophagy. Suppression of target of rapamycin, a downstream effector of phosphoinositide 3-kinase, also prevented lipofuscin accumulation in the heart.

Conclusions— Suppression of phosphoinositide 3-kinase prevented many age-associated changes in the heart and preserved cardiac function of aged mice.

  T Kato , S Niizuma , Y Inuzuka , T Kawashima , J Okuda , Y Tamaki , Y Iwanaga , M Narazaki , T Matsuda , T Soga , T Kita , T Kimura and T. Shioi
  Background—

Congestive heart failure (CHF) is associated with a change in cardiac energy metabolism. However, the mechanism by which this change is induced and causes the progression of CHF is unclear.

Methods and Results—

We analyzed the cardiac energy metabolism of Dahl salt-sensitive rats fed a high-salt diet, which showed a distinct transition from compensated left ventricular hypertrophy to CHF. Glucose uptake increased at the left ventricular hypertrophy stage, and glucose uptake further increased and fatty acid uptake decreased at the CHF stage. The gene expression related to glycolysis, fatty acid oxidation, and mitochondrial function was preserved at the left ventricular hypertrophy stage but decreased at the CHF stage and was associated with decreases in levels of transcriptional regulators. In a comprehensive metabolome analysis, the pentose phosphate pathway that regulates the cellular redox state was found to be activated at the CHF stage. Dichloroacetate (DCA), a compound known to enhance glucose oxidation, increased energy reserves and glucose uptake. DCA improved cardiac function and the survival of the animals. DCA activated the pentose phosphate pathway in the rat heart. DCA activated the pentose phosphate pathway, decreased oxidative stress, and prevented cell death of cultured cardiomyocytes.

Conclusions—

Left ventricular hypertrophy or CHF is associated with a distinct change in the metabolic profile of the heart. DCA attenuated the transition associated with increased energy reserves, activation of the pentose phosphate pathway, and reduced oxidative stress.

  T Kawashima , S Kawashima , C Tanaka , M Murai , M Yoneda , N. H Putnam , D. S Rokhsar , M Kanehisa , N Satoh and H. Wada
 

The evolution of vertebrates has included a number of important events: the development of cartilage, the immune system, and complicated craniofacial structures. Here, we examine domain shuffling as one of the mechanisms that contributes novel genetic material required for vertebrate evolution. We mapped domain-shuffling events during the evolution of deuterostomes with a focus on how domain shuffling contributed to the evolution of vertebrate- and chordate-specific characteristics. We identified ~1000 new domain pairs in the vertebrate lineage, including ~100 that were shared by all seven of the vertebrate species examined. Some of these pairs occur in the protein components of vertebrate-specific structures, such as cartilage and the inner ear, suggesting that domain shuffling made a marked contribution to the evolution of vertebrate-specific characteristics. The evolutionary history of the domain pairs is traceable; for example, the Xlink domain of aggrecan, one of the major components of cartilage, was originally utilized as a functional domain of a surface molecule of blood cells in protochordate ancestors, and it was recruited by the protein of the matrix component of cartilage in the vertebrate ancestor. We also identified genes that were created as a result of domain shuffling in ancestral chordates. Some of these are involved in the functions of chordate structures, such as the endostyle, Reissner's fiber of the neural tube, and the notochord. Our analyses shed new light on the role of domain shuffling, especially in the evolution of vertebrates and chordates.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility