Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by Shu Quan
Total Records ( 2 ) for Shu Quan
  Lluis Masip , Daniel Klein-Marcuschamer , Shu Quan , James C. A. Bardwell and George Georgiou
  Thioredoxin exported into the Escherichia coli periplasm catalyzes the oxidation of protein thiols in a DsbB-dependent function. However, the oxidative activity of periplasmic thioredoxin is insufficient to render dsbA cells susceptible to infection by M13, a phenotype that is critically dependent on disulfide bond formation in the cell envelope. We sought to examine the molecular determinants that are required in order to convert thioredoxin from a reductant into an efficient periplasmic oxidant. A genetic screen for mutations in thioredoxin that render dsbA cells sensitive to infection by M13 led to the isolation of a single amino acid substitution, G74S. In vivo the TrxA(G74S) mutant exhibited enhanced catalytic activity in the oxidation of alkaline phosphatase but was unable to oxidize FlgI and restore cell motility. In vitro studies revealed that the G74S substitution does not affect the redox potential of the thioredoxin-active site or its kinetics of oxidation by DsbB. Thus, the gain of function afforded by G74S stems in part from its altered substrate specificity, which also rendered the protein more resistant to reduction by DsbD/DsbC in the periplasm.

  Yong Chen , Xijiang Pan , Ying Tang , Shu Quan , Phang C. Tai and Sen-Fang Sui
  SecA is an obligatory component of the Escherichia coli general secretion pathway. However, the oligomeric structure of SecA and SecA conformational changes during translocation processes are still unclear. Here we obtained the three-dimensional structure of E. coli wild-type full-length SecA in solution by single particle cryo-electron microscopy and determined its oligomeric organization. In this structure, SecA occurs as a dimer in which the two protomers are arranged in an antiparallel mode, with a novel electrostatic interface, and both protomers are in closed conformation. The system developed here may provide a promising technique for studying dynamic structural changes in SecA.
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility