Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by Shadma Parveen
Total Records ( 3 ) for Shadma Parveen
  Tansir Ahamad , Nahid Nishat and Shadma Parveen
  A new polymeric Schiff base containing formaldehyde and piperazine moieties has been synthesized by condensation of salicylaldimine, formaldehyde and piperazine in alkaline medium; its metal polychelates have also been synthesized with Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) acetate. The synthesized Schiff base and its metal polychelates were characterized by elemental, spectral (IR, 1H NMR, UV-visible) and thermogravimetric analysis (TGA). Electronic spectra and magnetic moments indicate that Mn(II), Co(II) and Ni(II) polychelates show octahedral geometry, while Cu(II) and Zn(II) polychelates show square planar and tetrahedral geometry, respectively. All compounds show excellent anti-bacterial as well as anti-fungal activity against three bacteria and two fungi. The anti-microbial activities were determined by using agar well diffusion method, with 50 µg mL-1 and 100 µg mL-1 concentration of each compound tested against the microbes.
  Nahid Nishat , Tansir Ahamad , Sharif Ahmad and Shadma Parveen
  The polymeric ligand (BFP) was synthesized by condensation of bisphenol-A, formaldehyde, and piperazine in alkaline medium at 70–80°C. The polymer–metal complexes were synthesized by the reaction of BFP with Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) acetates in 1 : 0.5 (ligand : metal) molar ratio. All the synthesized polymers were characterized by elemental, spectral (infrared, 1H-NMR, and UV-Vis), magnetic moment measurements, and thermal (TGA) analysis. The ligand-field and nephelauxetic parameters have been determined from UV-Vis spectra using ligand-field theory. Elemental analyses indicate the association of water with metal for Mn(II), Co(II), and Ni(II), which is also supported by TGA. The antimicrobial activities of the synthesized polymers were studied by agar well diffusion methods against Bacillus subtilis, Bacillus megaterium, Staphylococcus aureus, Escherichia coli, Salmonella typhi, Pseudomonas aeruginosa, and Shigella boydii. The antimicrobial activity and thermal stability of Cu(II)–polymer were higher than the other polymer–metal complexes due to the higher stability constant of Cu(II).
  Nahid Nishat , Raza Rasool , Shamim Ahmad Khan and Shadma Parveen
  Advances in metal incorporated resins are now an active field of research. To develop resin having better antimicrobial and thermal activity, a series of metal-chelated resins have been synthesized by the condensation of (4-aminobenzene-1,3-diyl)dimethanol with 2,6-diaminohexanoic acid in alkaline medium and then this polymeric ligand further reacts with transition metal ions forming various coordination polymers. (4-Aminobenzene-1,3-diyl)dimethanol was initially prepared by the reaction of aniline and formaldehyde in 1 : 2 molar ratio in alkaline medium. The analytical data reveal that the polymer metal complexes of Mn(II), Co(II), and Ni(II) are coordinated with two water molecules, which are further supported by FTIR spectra and TGA data. Comparative analyses of the polymer metal complexes in thermal curves show better thermal stability than the polymeric ligand. Since these resins are relatively stable at high temperatures, they can be used for medical and biomaterial applications requiring thermal sterilization, solvent-resist coating materials because of their insoluble nature, and antifouling coating materials owing to antimicrobial activity in fields such as life-saving medical devices and the bottoms of ships.
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility