Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by Sen-Fang Sui
Total Records ( 2 ) for Sen-Fang Sui
  Shan Sun , Jun-Ping Yu , Feng Chen , Tong-Jin Zhao , Xiao-Hong Fang , Yi-Qin Li and Sen-Fang Sui
  Dehydration-responsive element-binding proteins (DREBs) and ethylene-responsive element (ERE) binding factors are two major subfamilies of the AP2/ethylene-responsive element-binding protein family and play crucial roles in the regulation of abiotic- and biotic-stress responses, respectively. In the present work, we have reported a previously identified DREB-like factor, TINY, that was involved in both abiotic- and biotic-stress signaling pathways. TINY was capable of binding to both DRE and ERE with similar affinity and could activate the expression of reporter genes driven by either of these two elements in tobacco cells. The 15th amino acid in the APETALA2 (AP2)/ethylene-responsive element-binding factor domain was demonstrated to be essential for its specific binding to ERE, whereas the 14th and 19th amino acids were responsible for the binding to DRE. The expression of TINY was greatly activated by drought, cold, ethylene, and slightly by methyl jasmonate. Additionally, overexpression of TINY in Arabidopsis resulted in elevated expressions of both the DRE- and the ERE-containing genes. Moreover, the expression of DRE-regulated genes, such as COR6.6 and ERD10, was up-regulated upon ethylene treatment, and the expression of ERE-regulated genes, such as HLS1, was also increased by cold stress, when the expression of TINY was being induced. These results strongly suggested that TINY might play a role in the cross-talk between abiotic- and biotic-stress-responsive gene expressions by connecting the DRE- and ERE-mediated signaling pathways. The results herein might promote the understanding of the mechanisms of specific DNA recognition and gene expression regulation by DREBs.
  Yong Chen , Xijiang Pan , Ying Tang , Shu Quan , Phang C. Tai and Sen-Fang Sui
  SecA is an obligatory component of the Escherichia coli general secretion pathway. However, the oligomeric structure of SecA and SecA conformational changes during translocation processes are still unclear. Here we obtained the three-dimensional structure of E. coli wild-type full-length SecA in solution by single particle cryo-electron microscopy and determined its oligomeric organization. In this structure, SecA occurs as a dimer in which the two protomers are arranged in an antiparallel mode, with a novel electrostatic interface, and both protomers are in closed conformation. The system developed here may provide a promising technique for studying dynamic structural changes in SecA.
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility