Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by S.E. Higgins
Total Records ( 4 ) for S.E. Higgins
  S.E. Higgins , J.P. s Higgin , L.R. Bielke and B.M. Hargis
  The objective of this study was to select appropriate bacteriophages that survive in the gastrointestinal tract of neonatal poultry and utilize those bacteriophages to reduce intestinal colonization of Salmonella enteritidis phage type 13A (SE) in challenged birds. Broiler chicks served as an in vivo biological filter to preferentially select bacteriophages from our bacteriophage library capable of surviving the gastrointestinal environment. A mixture of bacteriophage isolates designated PHL 1-71 was administered orally to three SE challenged chicks on three consecutive days. Each day, bacteriophages were recovered from the ileum, ileocecal junction and ceca for sequential administration the following day. The recovered bacteriophages were then administered to SE-infected turkey poults. In the first experiment, two-day old poults were challenged with 104cfu SE and treated 48 h later with 5mM Mg (OH)2 followed by 2.5×109 plaque forming units (pfu) of bacteriophages in 1mM Mg (OH)2 solution. This treatment numerically reduced SE recovered from cecal contents at 12 and 24 h after treatment as compared to untreated controls. In a second experiment, two-day old poults were challenged with 1.6×104 cfu SE and treated with 5mM Mg (OH)2 followed by 7.5×109 pfu phage in 1mM Mg (OH)2 solution 48 h post-challenge. We recovered 79,728 cfu of SE per g of cecal contents in the control group and 11,224 cfu/g in the phage treated group 24 h post treatment. These data were not significantly different, but they suggest that bacteriophages can be preferentially selected in vivo to increase survival in the avian gastrointestinal tract. However, improved efficacy is required prior to useful application of the approach for reducing Salmonella infection.
  J.L. Vicente , S.E. Higgins , B.M. Hargis and G. Tellez
  To evaluate the effect of a litter acidifier (PGLA) on Salmonella enteritidis(SE) horizontal transmission, two experiments were conducted with broiler chicks grown on used (Exp. 1) and new (Exp. 2) litter. In each experiment, three hundred day-old broiler chicks from a commercial hatchery were obtained and divided into three litter treatments with four replicate pens each. The treatments were: control (no litter treatment); low dose of PGLA (LD: 815g/2.27m2); and high dose (HD: 1631 g/2.27m2). In Exp. 1, two hundred-forty chicks were placed in floor pens with pine shaving-based litter previously used for at least two prior growouts (20 chicks/pen). Another 60 chicks were challenged with 7.5×103 cfu of SE (seeders), placed in a separate pen with clean new pine shaving-based litter for 24 hours, then 5 seeders (20%) were placed with the contact chicks in each respective treatment pen. Salmonella recovery from cecal tonsils of 10 chicks/ pen were evaluated on days 11 and 21. Application of PGLA at both LD and HD on used litter significantly reduced (p<0.05) SE recovery compared to controls (Control: 28%, LL: 0%; HL: 3% respectively) on day 11 after placement, but no difference was observed at day 21. However, a significant increase (p<0.05) in body weight was detected in the HD compared to the control group on d21, but not d11. Similarly, application of PGLA to clean pine shavings (Exp. 2) reduced (p<0.05) SE recovery from cecae of chicks cultured on day 11 (control: 46%; LD: 23%; HD: 18% respectively). Body weights through 21 days were unaffected by PGLA treatment of new litter. These data suggest that PGLA treatment of new or used litter may reduce early horizontal transmission of Salmonella. Enhanced 21-day performance of chicks on used litter treated with PGLA may suggest that other low-level pathogens were reduced by treatment, although further studies are necessary to confirm and extend these findings.
  A.D. Wolfenden , J.L. Vicente , L.R. Bielke , C.M. Pixley , S.E. Higgins , D.J. Donoghue , A.M. Donoghue , B.M. Hargis and G. Tellez
  Effective Competitive Exclusion (CE) cultures have been shown to accelerate development of normal microflora in chicks and poults, providing increased resistance to infection by some enteric bacterial pathogens. Our objective was to develop a CE culture for prophylaxis and reduced horizontal transmission of Salmonella enteritidis (SE) in broiler chickens. In the present study, seven members of the family Enterobacteriaceae and 2 lactic acid bacteria isolates, each capable of in vitro and in vivo inhibition of SE, were selected and combined to form the putative CE culture. In the first experiment, day-of-hatch chicks were randomly divided into four pens. All treated chicks were orally gavaged with the CE culture and 3 pens were treated with the CE culture in the drinking water for four consecutive days. Treated and control-non treated chicks were challenged with SE on day 4. All 3 groups of birds that were treated with the CE culture had a significant decrease (p<0.05) in cecal colonization compared with non-CE-treated SE-challenged chicks. Two additional experiments were designed to measure the efficacy of the CE culture in reducing SE horizontal transmission from infected to uninfected chicks when commingled. SE was recovered in the cecal tonsils with a significantly lower incidence at days 7 and 14 in Experiment 2 and day 7 in Experiment 3 from the groups that received the CE in the drinking water as compared to controls respectively. These results suggest that a relatively simple and defined CE culture can reduce SE colonization in neonatal chicks.
  A.D. Wolfenden , C.M. Pixley , J.P. Higgins , S.E. Higgins , B.M. Hargis , G. Tellez , J.L. Vicente and A. Torres-Rodriguez
  Spray application offers low-cost and efficient application of biologic and reduced concerns regarding diverse water quality and medicator/proportioner function. The objective of the present study was to evaluate the spray application of a Lactobacillus-based probiotic on Salmonella enteritidis (SE) colonization in broiler chickens. Day-of-hatch chicks were challenged with Salmonella enteritidis (SE) by oral gavage alone, challenged with SE and treated by coarse spray application of a commercially-availably Lactic-acid bacterial probiotic (FM-B11™), or challenged with SE and treated with B11 continuously in the Drinking Water (DW). Five days post-challenge, cecal tonsils were collected for presence or absence of SE. In Exp. 1, probiotic treatment by either spray or DW application significantly (p<0.05) reduced SE recovery (55% and 50% respectively; controls 85%) when chicks were held for 8h prior to challenge and placement. Similarly, when probiotic spray treatment or water treatment and challenge occurred simultaneously, with placement 8h after treatment, a marked and significant reduction of SE recovery was noted after 5d (10% and 40% respectively, controls 55%). In Exp. 2, when probiotic spray treatment and challenge occurred simultaneously, with placement 8h after treatment, a significant reduction of SE recovery was again noted in both the spray and DW application (80% controls, 15% spray, 15% DW). Taken together, these results suggest that spray application of B11, when performed in the manner described above, can be effective for protection of chicks against Salmonella infection.
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility