Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by S. M Lippman
Total Records ( 4 ) for S. M Lippman
  X Wu , M. R Spitz , J. J Lee , S. M Lippman , Y Ye , H Yang , F. R Khuri , E Kim , J Gu , R Lotan and W. K. Hong

This study was aimed to identify novel susceptibility variants for second primary tumor (SPT) or recurrence in curatively treated early-stage head and neck squamous cell carcinoma (HNSCC) patients.

We constructed a custom chip containing a comprehensive panel of 9,645 chromosomal and mitochondrial single nucleotide polymorphisms (SNP) representing 998 cancer-related genes selected by a systematic prioritization schema. Using this chip, we genotyped 150 early-stage HNSCC patients with and 300 matched patients without SPT/recurrence from a prospectively conducted randomized trial and assessed the association of these SNPs with risk of SPT/recurrence.

Individually, six chromosomal SNPs and seven mitochondrial SNPs were significantly associated with risk of SPT/recurrence after adjustment for multiple comparisons. A strong gene-dosage effect was observed when these SNPs were combined, as evidenced by a progressively increasing SPT/recurrence risk as the number of unfavorable genotypes increased (P for trend < 1.00 x 10–20). Several polygenic analyses suggest an important role of interconnected functional network and gene-gene interaction in modulating SPT/recurrence. Furthermore, incorporation of these genetic markers into a multivariate model improved significantly the discriminatory ability over the models containing only clinical and epidemiologic variables.

This is the first large-scale systematic evaluation of germ-line genetic variants for their roles in HNSCC SPT/recurrence. The study identified several promising susceptibility loci and showed the cumulative effect of multiple risk loci in HNSCC SPT/recurrence. Furthermore, this study underscores the importance of incorporating germ-line genetic variation data with clinical and risk factor data in constructing prediction models for clinical outcomes.

  V. D Kekatpure , J. O Boyle , X. K Zhou , A. J Duffield Lillico , N. D Gross , N. Y Lee , K Subbaramaiah , J. D Morrow , G Milne , S. M Lippman and A. J. Dannenberg

Cyclooxygenase (COX)-derived prostaglandin E2 (PGE2) plays a role in the development and progression of several tumor types including head and neck squamous cell carcinoma (HNSCC). Measurements of urinary PGE metabolite (PGE-M) can be used as an index of systemic PGE2 production. In ever smokers, increased levels of urinary PGE-M reflect increased COX-2 activity. In this study, we determined whether baseline levels of urinary PGE-M were prognostic for ever smoker HNSCC patients. A retrospective chart review of ever smoker HNSCC patients treated with curative intent was done. Fifteen of 31 evaluable patients developed progressive disease (recurrence or a second primary tumor) after a median follow-up of 38 months. There were no statistically significant differences between patients with (n = 15) or without disease progression (n = 16) with regard to stage, site, treatment received, smoking status, and aspirin use during follow-up. Median urinary PGE-M levels were significantly higher in HNSCC patients with disease progression (21.7 ng/mg creatinine) compared with patients without (13.35 ng/mg creatinine; P = 0.03). Importantly, patients with high baseline levels of urinary PGE-M had a significantly greater risk of disease progression (hazard ratio, 4.76, 95% CI, 1.31-17.30; P < 0.01) and death (hazard ratio, 9.54; 95% CI, 1.17-77.7; P = 0.01) than patients with low baseline levels of urinary PGE-M. These differences were most evident among patients with early-stage disease. Taken together, our findings suggest that high baseline levels of urinary PGE-M indicate a poor prognosis in HNSCC patients. Possibly, HNSCC patients with high COX-2 activity manifested by elevated urinary PGE-M will benefit from treatment with a COX-2 inhibitor.

  J Wang , S. M Lippman , J. J Lee , H Yang , F. R Khuri , E Kim , J Lin , D. W Chang , R Lotan , W. K Hong and X. Wu

Curatively treated patients with early-stage head and neck squamous cell carcinoma (HNSCC) are at high risks for second primary tumor (SPT) and recurrence. The regulator of G-protein signaling (RGS) is important in essential signaling transduction and cellular activities. We hypothesize that genetic variations of RGS may modulate the risk of SPT/recurrence in patients with early-stage HNSCC. In a nested case–control study, we evaluated 98 single-nucleotide polymorphisms (SNPs) in 17 RGS genes for the risk of SPT/recurrence among 450 HNSCC patients. Eight SNPs showed significant associations with the risk of SPT/recurrence, with the most significant one of rs2179653, which is located in the 5'-flanking region of RGS2 gene. Under a recessive genetic model, the homozygous variant genotype of this SNP was associated with 2.95-fold [95% confidence interval (CI): 1.52–5.74] increased risk of SPT/recurrence. This association remained significant after the adjustment for multiple comparisons. Cumulative effects analysis revealed that the risk increased significantly with the increasing numbers of unfavorable genotypes. Compared with subjects carrying 0–2 unfavorable genotypes, the hazard ratios (95% CIs) for those carrying 3 or 4+ were 1.73 (1.10–2.70) and 3.05 (1.92–4.83), respectively. Furthermore, survival tree analysis revealed potential higher order gene–gene interactions and indicated different outcomes based on distinct genotype profiles. Genetic variations of RGS genes may modulate the susceptibility to SPT/recurrence in early-stage HNSCC patients individually and cumulatively. Our results stressed the importance of taking a polygenic approach to evaluate the cumulative and interaction effects of genetic variations in the prediction of cancer risk and prognosis.

  X Zhang , H Yang , J. J Lee , E Kim , S. M Lippman , F. R Khuri , M. R Spitz , R Lotan , W. K Hong and X. Wu

Second primary tumor (SPT) and/or recurrence negatively impact the prognosis of patients with curatively treated early-stage head and neck cancer. MicroRNAs (miRNAs) play important roles in cancer development. We explored whether the variations of miRNA-related pathway were associated with the risk of SPT/recurrence in patients with early-stage head and neck cancer. This study includes 150 early-stage head and neck cancer patients with SPT/recurrence and 300 patients without SPT/recurrence. Two hundred and thirty-five tagging and potentially functional single-nucleotide polymorphisms (SNPs) were genotyped from eight miRNA biogenesis pathway genes and 135 miRNA-targeted genes. Eighteen miRNA-related SNPs were significantly associated with the risk of SPT/recurrence. The most significant SNP was rs3747238, a miRNA-binding site SNP in SMC1B. The variant homozygous genotype of this SNP was associated with a 1.74-fold increased risk [95% confidence interval (CI) 1.19–2.54; P = 0.004]. Cumulative effect analysis showed joint effects for the number of unfavorable genotype in patients. Survival tree analysis further identified the high-order gene–gene interactions and categorized the study subjects into low-, medium- and high-risk groups. Patients in the high-risk group had a 4.84-fold increased risk (95% CI: 3.11–7.51; P = 2.45 x 10–12) and a shorter event-free median survival time of 37.9 months (log rank P = 2.28 x 10–13). Our results suggested that miRNA-related genetic polymorphisms may be used individually and jointly to predict the risk of SPT/recurrence of early-stage head and neck cancer patients.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility