Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by S. K Kulp
Total Records ( 2 ) for S. K Kulp
  P. H Huang , D Wang , H. C Chuang , S Wei , S. K Kulp and C. S. Chen
 

As part of our effort to understand the mechanism underlying -tocopheryl succinate [vitamin E succinate (VES)]-mediated antitumor effects, we investigated the signaling pathway by which VES suppresses androgen receptor (AR) expression in prostate cancer cells. VES and, to a greater extent, its truncated derivative TS-1 mediated transcriptional repression of AR in prostate cancer cells but not in normal prostate epithelial cells; a finding that underscores the differential susceptibility of normal versus malignant cells to the antiproliferative effect of these agents. This AR repression was attributable to the ability of VES and TS-1 to facilitate the proteasomal degradation of the transcription factor Sp1. This mechanistic link was corroborated by the finding that proteasome inhibitors or ectopic expression of Sp1 protected cells against drug-induced AR ablation. Furthermore, evidence suggests that the destabilization of Sp1 by VES and TS-1 resulted from the inactivation of Jun N-terminal kinases (JNKs) as a consequence of increased phosphatase activity of protein phosphatase 2A (PP2A). Stable transfection of LNCaP cells with the dominant-negative JNK1 plasmid mimicked drug-induced Sp1 repression, whereas constitutive activation of JNK kinase activity or inhibition of PP2A activity by okadaic acid protected Sp1 from VES- and TS-1-induced degradation. From a mechanistic perspective, the ability of VES and TS-1 to activate PP2A activity underscores their broad spectrum of effects on multiple signaling mechanisms, including those mediated by Akt, mitogen-activated protein kinases, nuclear factor kappaB, Sp1 and AR. This pleiotropic effect in conjunction with low toxicity suggests the translational potential for developing TS-1 into potent PP2A-activating agents for cancer therapy.

  J. R Weng , C. H Tsai , H. A Omar , A. M Sargeant , D Wang , S. K Kulp , C. L Shapiro and C. S. Chen
 

The molecular heterogeneity of human tumors challenges the development of effective preventive and therapeutic strategies. To overcome this issue, a rational approach is the concomitant targeting of clinically relevant cellular abnormalities with combination therapy or a potent multi-targeted agent. OSU-A9 is a novel indole-3-carbinol derivative that retains the parent compound's ability to perturb multiple components of oncogenic signaling, but provides marked advantages in chemical stability and antitumor potency. Here, we show that OSU-A9 exhibits two orders of magnitude greater potency than indole-3-carbinol in inducing apoptosis in various breast cancer cell lines with distinct genetic abnormalities, including MCF-7, MDA-MB-231 and SKBR3, with the half maximal inhibitory concentration in the range of 1.2–1.8 µM vis-à-vis 200 µM for indole-3-carbinol. This differential potency was paralleled by OSU-A9’s superior activity against multiple components of the Akt–nuclear factor-kappa B (NF-B) and stress response signaling pathways. Notable among these were the increased estrogen receptor (ER)-β/ER expression ratio, reduced expression of HER2 and CXCR4 and the upregulation of aryl hydrocarbon receptor expression and its downstream target NF-E2 p45-regulated factor (Nrf2). Non-malignant MCF-10A cells were resistant to OSU-A9’s antiproliferative effects. Daily oral administration of OSU-A9 at 25 and 50 mg/kg for 49 days significantly inhibited MCF-7 tumor growth by 59 and 70%, respectively, without overt signs of toxicity or evidence of induced hepatic biotransformation enzymes. In summary, OSU-A9 is a potent, orally bioavailable inhibitor of the Akt–NF-B signaling network, targeting multiple aspects of breast tumor pathogenesis and progression. Thus, its translational potential for the treatment or prevention of breast cancer warrants further investigation.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility