Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by S. J. Yang
Total Records ( 2 ) for S. J. Yang
  Y. Liu , S. Q. Li , S. J. Yang , W. Hu and X. P. Chen
  Carbon dioxide flux from the soil to the atmosphere is an important component of terrestrial C cycling, and accurate estimates of CO2-C fluxes are crucial for estimating C budgets. A field study was conducted (i) to examine the diurnal and seasonal soil CO2 flux pattern in spring maize fields on the Loess Plateau, and (ii) to determine the effects of soil characteristics affected by various cultivation practices on CO2 flux from the soil surface to the atmosphere. Soil surface CO2 flux was determined with an LI-8100 Automated Soil Flux System, and related environmental factors were also measured, including near-ground air temperature and relative humidity, soil moisture (0-15 cm), soil temperature (at depths of 5, 10, 15, and 20 cm), and leaf area index. Diurnal soil CO2 flux showed a single peak between 12-00 h and 16-00 h, and reached a minimum in the early morning, at about 4-00 h. During the crop's growing season, soil CO2 flux increased during the rapid vegetative growth stages, reached its maximum during the peak reproductive stages, and then declined as the plants senesced. Time series analysis showed that the temporal dynamics of the CO2 flux were more closely related to air temperature than to soil temperature; this may be because a substantial portion of the CO2 originated from surface residues. The time-averaged mean soil CO2 flux for different cultivation practices over the growing season was ranked as follows: plastic film mulching (3.980 µmol m-2s-1) > corn straw mulching (3.464 µmol m-2s-1) > supplementary irrigating (3.157 µmol m-2s-1) > rain-fed (2.371 µmol m-2s-1) > bare ground (1.934 µmol m-2s-1). Different cultivation practices affected plant and microbial activities, and soil hydrothermal conditions, and caused different patterns of soil surface CO2 flux in spring maize fields on the Loess Plateau.
  H. J. Yoo , M. S. Park , T. N. Kim , S. J. Yang , G. J. Cho , T. G. Hwang , S. H. Baik , D. S. Choi , G. H. Park and K. M. Choi
  Aims The rapidly increasing prevalence of chronic diseases is an important challenge to healthcare systems worldwide. To improve the quality and efficiency of chronic disease care, we investigated the effectiveness and applicability of the Ubiquitous Chronic Disease Care (UCDC) system using cellular phones and the internet for overweight patients with both Type 2 diabetes and hypertension.

Methods We conducted a randomized, controlled clinical trial over 3 months that included 123 patients at a university hospital and a community public health centre.

Results After 12 weeks, there were significant improvements in HbA1c in the intervention group (7.6 ± 0.9% to 7.1 ± 0.8%, P < 0.001) compared with the control group (7.4 ± 0.9% to 7.6 ± 1.0%, P = 0.03). Furthermore, we observed a significant reduction in systolic and diastolic blood pressure, as well as improvements in total cholesterol, low-density lipoprotein-cholesterol and triglyceride levels in the intervention group. Furthermore, there was a significant increase in adiponectin levels in the intervention group compared with the control group, although high-sensitivity C-reactive protein and interleukin-6 levels did not change in either group.

Conclusions The novel UCDC system presented in this paper improved multiple metabolic parameters simultaneously in overweight patients with both Type 2 diabetes and hypertension.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility