Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by S. A. Rodwell
Total Records ( 2 ) for S. A. Rodwell
  A. M. C. P Joosen , E Lecommandeur , G. G. C Kuhnle , S. M Aspinall , L Kap and S. A. Rodwell
 

N-3 polyunsaturated fatty acids have been associated with reduced colon tumorigenesis. However, their association with colorectal cancer incidence is not conclusive. We investigated the influence of isocaloric replacement of red meat with fatty fish on endogenous nitrosation, inflammation and genotoxicity of faecal water in apparently healthy human volunteers on controlled diets. Fourteen volunteers consumed a high red meat, a combined red meat/fish and a high fish diet for 8 days each. Faecal homogenates were analysed for haem, nitroso compounds (NOC) and calprotectin and associated supernatants for genotoxicity. Both faecal NOC and haem excretion decreased with more fish and less meat in the diet. Nitrosyl iron (FeNO) was the main contributor to total NOC on all diets. The proportion of other NOC increased with more fish and less meat in the diet (P = 0.01), resulting in a non-statistically significant decrease in the proportion of FeNO on the fish diet. There was no statistically significant difference in faecal calprotectin (P = 0.54) and faecal water-induced DNA strand breaks and oxidized purines and pyrimidines between the diets (P > 0.36). Increasing fish intake and reducing the intake of red meat does not seem to have an effect on inflammation and faecal water-induced (oxidative) DNA damage; however, it does reduce the formation of mutagenic and potentially carcinogenic NOC and may as such beneficially affect colorectal risk.

  J. Y Park , P. N Mitrou , J Keen , C. C Dahm , L. J Gay , R. N Luben , A McTaggart , K. T Khaw , R. Y Ball , M. J Arends and S. A. Rodwell
 

The tumour suppressor p53 is one of the most commonly altered genes in colorectal cancer (CRC) development. Genetic alterations in p53 may therefore be associated with postulated lifestyle risk factors for CRC, such as red meat consumption. In the European Prospective Investigation into Cancer and Nutrition-Norfolk study, we examined whether detailed estimates of dietary and lifestyle factors measured at baseline related to later development of p53 mutations in CRCs. After 10-year follow-up, there were 185 incident CRCs of which 34% had somatic p53 mutations (p53+). We observed significantly higher mean intakes of alcohol, total meat and red meat, in the group with p53 mutations and advanced Dukes’ stage disease (daily alcohol intake was 7 and 12 g for p53– and p53+ cases, respectively, P = 0.04; daily total meat intake was 69 and 100 g for p53– and p53+ cases, respectively, P = 0.03 and daily red meat intake was 39 and 75 g for p53– and p53+ cases, respectively, P = 0.01). Each 50 g/day increment in total meat intake was associated with having p53 mutations in cases with advanced Dukes’ stages [odds ratio (OR): 3.43, 95% confidence interval (CI): 1.47–7.96]. Similarly, each 50 g/day increment in red meat intake was also significantly associated with having consistent p53 mutations in cases with advanced Dukes’ stages (OR: 2.42, 95% CI: 1.18–4.96). These effects of total meat or red meat intake and advanced Dukes’ stages were independent of age, sex, body mass index, smoking and alcohol intake. Furthermore, P values for interaction between daily total meat or red meat intake and Dukes’ stages were statistically significant in multivariable models (Pinteraction < 0.001). Our results suggest that p53 mutations accelerate progression of CRC to advanced Dukes’ stage in association with higher meat especially red meat intakes.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility