Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by S Xie
Total Records ( 2 ) for S Xie
  J Xiao , S Yin , Y Li , S Xie , D Nie , L Ma , X Wang , Y Wu and J. Feng
 

S-phase kinase-associated protein 2 (SKP2) gene is a tumor suppressor gene, and is involved in the ubiquitin-mediated degradation of P27kip1. SKP2 and P27kip1 affect the proceeding and prognosis of leukemia through regulating the proliferation, apoptosis and differentiation of leukemia cells. In this study, we explored the mechanism of reversing of HL-60/A drug resistance through SKP2 down-regulation. HL-60/A cells were nucleofected by Amaxa Nucleofector System with SKP2 siRNA. The gene and protein expression levels of Skp2, P27kip1, and multi-drug resistance associated protein (MRP) were determined by reverse transcription-polymerase chain reaction and western blot analysis, respectively. The cell cycle was analyzed by flow cytometry. The 50% inhibitory concentration value was calculated using cytotoxic analysis according to the death rate of these two kinds of cells under different concentrations of chemotherapeutics to compare the sensitivity of the cells. HL-60/A cells showed multi-drug resistance phenotype characteristic by cross-resistance to adriamycin, daunorubicin, and arabinosylcytosine, due to the expression of MRP. We found that the expression of SKP2 was higher in HL-60/A cells than in HL-60 cells, but the expression of P27kip1 was lower. The expression of SKP2 in HL-60/A cells nucleofected by SKP2 siRNA was down-regulated whereas the protein level of P27kip1 was up-regulated. Compared with the MRP expression level in the control group (nucleofected by control siRNA), the mRNA and protein expression levels of MRP in HL-60/A cells nucleofected by SKP2 siRNA were lower, and the latter cells were more sensitive to adriamycin, daunorubicin, and arabinosylcytosine. Down-regulating the SKP2 expression and arresting cells in the G0/G1 phase improve drug sensitivity of leukemia cells with down-regulated MRP expression.

  G. M Tozer , V. E Prise , G Lewis , S Xie , I Wilson and S. A. Hill
 

Purpose: The therapeutic potential of combining the prototype tumor vascular-disrupting agent combretastatin A-4 3-O-phosphate (CA-4-P) with systemic nitric oxide synthase (NOS) inhibition was investigated preclinically.

Experimental Design: Vascular response (uptake of 125I-labeled iodoantipyrine; laser Doppler flowmetry) and tumor response (histologic necrosis; cytotoxicity and growth delay) were determined.

Results: Inducible NOS selective inhibitors had no effect on blood flow in the P22 rat sarcoma. In contrast, the non–isoform-specific NOS inhibitor N-nitro- l-arginine (l-NNA; 1 and 10 mg/kg i.v. or chronic 0.1 or 0.3 mg/mL in drinking water) decreased the P22 blood flow rate selectively down to 36% of control at 1 hour but did not induce tumor necrosis at 24 hours. CA-4-P, at clinically relevant doses, decreased the P22 blood flow rate down to 6% of control at 1 hour for 3 mg/kg but with no necrosis induction. However, l-NNA administration enhanced both CA-4-P–induced tumor vascular resistance at 1 hour (chronic l-NNA administration) and necrosis at 24 hours, with 45% or 80% necrosis for 3 and 10 mg/kg CA-4-P, respectively. Bolus l-NNA given 3 hours after CA-4-P was the most effective cytotoxic schedule in the CaNT mouse mammary carcinoma, implicating a particular enhancement by l-NNA of the downstream consequences of CA-4-P treatment. Repeated dosing of l-NNA with CA-4-P produced enhanced growth delay over either treatment alone in P22, CaNT, and spontaneous T138 mouse mammary tumors, which represented a true therapeutic enhancement.

Conclusions: The combination of NOS inhibition with CA-4-P is a promising approach for targeting tumor vasculature, with relevance for similar vascular-disrupting agents in development.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility