Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by S Ullrich
Total Records ( 14 ) for S Ullrich
  K. M Boini , D Graf , A. M Hennige , S Koka , D. S Kempe , K Wang , T. F Ackermann , M Foller , V Vallon , K Pfeifer , E Schleicher , S Ullrich , H. U Haring , D Haussinger and F. Lang
  The pore-forming K+-channel -subunit KCNQ1 is expressed in a wide variety of tissues including heart, skeletal muscle, liver, and epithelia. Most recent evidence revealed an association of the KCNQ1 gene with the susceptibility to type 2 diabetes. KCNQ1 participates in the regulation of cell volume, which is, in turn, critically important for the regulation of metabolism by insulin. The present study explored the influence of KCNQ1 on insulin-induced cellular K+ uptake and glucose metabolism. Insulin (100 nM)-induced K+ uptake was determined in isolated perfused livers from KCNQ1-deficient mice (kcnq1–/–) and their wild-type littermates (kcnq1+/+). Moreover, plasma glucose and insulin levels, intraperitoneal glucose (3 g/kg) tolerance, insulin (0.15 U/kg)-induced hypoglycemia, and peripheral uptake of radiolabeled 3H-deoxy-glucose were determined in both genotypes. Insulin-stimulated hepatocellular K+ uptake was significantly more sustained in isolated perfused livers from kcnq1–/– mice than from kcnq1+/+mice. The decline of plasma glucose concentration following an intraperitoneal injection of insulin was again significantly more sustained in kcnq1–/– than in kcnq1+/+ mice. Both fasted and nonfasted plasma glucose and insulin concentrations were significantly lower in kcnq1–/– than in kcnq1+/+mice. Following an intraperitoneal glucose injection, the peak plasma glucose concentration was significantly lower in kcnq1–/– than in kcnq1+/+mice. Uptake of 3H-deoxy-glucose into skeletal muscle, liver, kidney and lung tissue was significantly higher in kcnq1–/– than in kcnq1+/+mice. In conclusion, KCNQ1 counteracts the stimulation of cellular K+ uptake by insulin and thereby influences K+-dependent insulin signaling on glucose metabolism. The observations indicate that KCNQ1 is a novel molecule affecting insulin sensitivity of glucose metabolism.
  S Ullrich

The pathogenesis of granulomatous inflammation in the respiratory tract and autoimmunity in Wegener granulomatosis (WG) are poorly understood. Since mucociliar clearance represents the first major line of defence in the respiratory tract and its breakdown facilitates chronic inflammation, we investigated ciliary beat frequency (CBF) in WG.


Nasal epithelial cells were obtained from 30 patients with WG with involvement of the upper respiratory tract, 12 patients with other inflammatory rheumatic disease and 10 healthy controls. CBF was measured at 5 and 24 h after collection. Results were correlated with clinical data.


CBF was significantly reduced in WG compared to disease and healthy controls after 5 and 24 h. In WG, CBF almost stagnated after 24 h. Reduction of CBF correlated with the cumulative number of immunosuppressive agents in WG, but not in disease controls. No correlation was found between CBF impairment and cyclophosphamide levels, disease extent, disease activity, disease duration, serological and microbiological findings, or inflammation markers.


CBF is severely impaired in WG, potentially influenced by immunosuppressive treatment. To what extent CBF impairment and subsequent barrier dysfunction are caused by other factors still has to be elucidated. Supportive measures to improve mucociliary clearance should be discussed in patients with WG.

  O Grottke , A Ntouba , S Ullrich , W Liao , E Fried , A Prescher , T. M Deserno , T Kuhlen and R. Rossaint

The safe performance of regional anaesthesia (RA) requires theoretical knowledge and good manual skills. Virtual reality (VR)-based simulators may offer trainees a safe environment to learn and practice different techniques. However, currently available VR simulators do not consider individual anatomy, which limits their use for realistic training. We have developed a VR-based simulator that can be used for individual anatomy and for different anatomical regions.


Individual data were obtained from magnetic resonance imaging (MRI) and magnetic resonance angiography (MRA) without contrast agent to represent morphology and the vascular system, respectively. For data handling, registration, and segmentation, an application based on the Medical Imaging Interaction Toolkit was developed. Suitable segmentation algorithms such as the fuzzy c-means clustering approach were integrated, and a hierarchical tree data structure was created to model the flexible anatomical structures of peripheral nerve cords. The simulator was implemented in the VR toolkit ViSTA using modules for collision detection, virtual humanoids, interaction, and visualization. A novel algorithm for electric impulse transmission is the core of the simulation.


In a feasibility study, MRI morphology and MRA were acquired from five subjects for the inguinal region. From these sources, three-dimensional anatomical data sets were created and nerves modelled. The resolution obtained from both MRI and MRA was sufficient for realistic simulations. Our high-fidelity simulator application allows trainees to perform virtual peripheral nerve blocks based on these data sets and models.


Subject-specific training of RA is supported in a virtual environment. We have adapted segmentation algorithms and developed a VR-based simulator for the inguinal region for use in training for different peripheral nerve blocks. In contrast to available VR-based simulators, our simulation offers anatomical variety.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility