Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by S Mori
Total Records ( 2 ) for S Mori
  T Kodama , N Tomita , S Horie , N Sax , H Iwasaki , R Suzuki , K Maruyama , S Mori and F. Manabu

Sonoporation is achieved by ultrasound-mediated destruction of ultrasound contrast agents (UCA) microbubbles. For this, UCAs must be tissue specific and have good echogenicity and also function as drug carriers. Previous studies have developed acoustic liposomes (ALs), liposomes that encapsulate phosphate buffer solution and perfluoropropane (C3F8) gas and function as both UCAs and drug carriers. Few studies have examined the co-existence of gas and liquid in ALs. This study aims to elucidate AL structure using TEM. The size, zeta potential and structure of ALs were compared with those of two other UCAs, human albumin shell bubbles (ABs; Optison) and lipid bubbles (LBs). ABs and LBs encapsulate the C3F8 gas. Particle size was measured by dynamic light scattering. The zeta potential was determined by the Smoluchowski equation. UCA structure was investigated by TEM. ALs were ~200 nm in size, smaller than LBs and ABs. ALs and LBs had almost neutral zeta potentials whereas AB values were strongly negative. The negative or double staining TEM images revealed that ~20% of ALs contained both liquid and gas, while ~80% contained liquid alone (i.e. nonacoustic). Negative staining AB images indicated electron beam scattering near the shell surface, and albumin was detected in filament form. These findings suggest that AL is capable of carrying drugs and high-molecular-weight, low-solubility gases.

  S Uraguchi , S Mori , M Kuramata , A Kawasaki , T Arao and S. Ishikawa

Physiological properties involved in divergent cadmium (Cd) accumulation among rice genotypes were characterized using the indica cultivar ‘Habataki’ (high Cd in grains) and the japonica cultivar ‘Sasanishiki’ (low Cd in grains). Time-dependence and concentration-dependence of symplastic Cd absorption in roots were revealed not to be responsible for the different Cd accumulation between the two cultivars because root Cd uptake was not greater in the Cd-accumulating cultivar ‘Habataki’ compared with ‘Sasanishiki’. On the other hand, rapid and greater root-to-shoot Cd translocation was observed in ‘Habataki’, which could be mediated by higher abilities in xylem loading of Cd and transpiration rate as a driving force. To verify whether different abilities in xylem-mediated shoot-to-root translocation generally account for the genotypic variation in shoot Cd accumulation in rice, the world rice core collection, consisting of 69 accessions which covers the genetic diversity of almost 32 000 accessions of cultivated rice, was used. The results showed strong correlation between Cd levels in xylem sap and shoots and grains among the 69 rice accessions. Overall, the results presented in this study revealed that the root-to-shoot Cd translocation via the xylem is the major and common physiological process determining the Cd accumulation level in shoots and grains of rice plants.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility