Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by S Meyer
Total Records ( 5 ) for S Meyer
  Y Ishibashi , Y Nagamatsu , S Meyer , A Imamura , H Ishida , M Kiso , N Okino , R Geyer and M. Ito

Although 6-gala series glycosphingolipids possessing R-Gal (/β) 1-6Galβ1-1'Cer have been found in some mollusks, pathogenic parasites, and fungi, their physiological functions and metabolic pathway are not fully understood. We described a novel method of detecting 6-gala series glyco- sphingolipids utilizing the specificity of endogalactosylceramidase (EGALC), which is capable of hydrolyzing 6-gala series glycosphingolipids to produce intact oligosaccharides and ceramides. EGALC catalyzes not only hydrolysis but also a transglycosylation reaction. In the latter reaction, EGALC transfers oligosaccharides from the glycosphingolipids to acceptors such as fluorescent 1-alkanols. Based on the transglycosylation reaction of EGALC, a specific, easy, fast, sensitive, and reproducible method of detecting 6-gala series glycosphingolipids was developed using NBD-pentanol as an acceptor. The fluorescent products, NBD-pentanol-conjugated 6-gala oligosaccharides, were separated and detected by TLC or HPLC with a fluorescent detector. Moreover, it was revealed that as well as glycosphingolipids, a glycoglycerolipid, digalactosyldiacylglycerol, was utilized by EGALC as a donor substrate. This method was successfully applied to detect 6-gala series glycosphingolipids in a fungus, Rhizopus oryzae, and a parasite, Taenia crassiceps. The method would be useful for studying glycosphingolipids and galactosyl glycerolipids which share the Gal (/β) 1-6Gal structure.

  S Meyer , J Nolte , L Opitz , G Salinas Riester and W. Engel

DNA microarray analysis was performed with mouse multipotent adult germline stem cells (maGSCs) and embryonic stem cells (ESCs) from different genetic backgrounds cultured under standard ESC-culture conditions and under differentiation-promoting conditions by the withdrawal of the leukemia inhibitory factor (LIF) and treatment with retinoic acid (RA). The analyzed undifferentiated cell lines are very similar based on their global gene expression pattern and show 97–99% identity dependent on the analyzed background. Only 621 genes are differentially expressed in cells derived from mouse 129SV-background and 72 genes show differences in expression in cells generated from transgenic Stra8-EGFP/Rosa26-LacZ-background. Both maGSCs and ESCs express the same genes involved in the regulation of pluripotency and even show no differences in the expression level of these genes. When comparing maGSCs with previously published signature genes of other pluripotent cell lines, we found that maGSCs shared a very similar gene expression pattern with embryonic germ cells (EGCs). Also after differentiation of maGSCs and ESCs the transcriptomes of the cell lines are nearly identical which suggests that both cell types differentiate spontaneously in a very similar way. This is the first study, at transcriptome level, to compare ESCs and a pluripotent cell line derived from an adult organism (maGSCs).

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility