Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by S Mao
Total Records ( 2 ) for S Mao
  Y Wang , S Mao , B Li , P Tan , D Feng and J. Wen
 

Hepatitis C virus (HCV) infection is a leading cause of liver-related morbidity and mortality throughout the world. There is no vaccine available and current therapy is only partially effective. Since HCV infects only a minority of hepatocytes, we hypothesized that induction of apoptosis might be a promising approach for the treatment of hepatitis C. In the present study, recombinant caspase-3 gene (re-caspase-3) was used because it has the ability to induce apoptosis that is independent of the initiator caspases. An HCV-specific promoter is required to regulate the cytotoxic caspase-3 expression in HCV-infected cells. It has been reported that HCV core protein can specifically activate the 2',5'-oligoadenylate synthetase (OAS) gene promoter in human hepatocytes. Therefore, we constructed an expression vector consisting of the re-caspase-3 under the OAS gene promoter (pGL3-OAS-re-caspase-3) and then investigated its effect on HCV core-positive liver cells. It was found that the pGL3-OAS-re-caspase-3 construct induced apoptosis in HCV core-positive liver cells, but not in normal liver cells. These results strongly suggested that the transfer of the re-caspase-3 gene under the OAS promoter was a novel targeting approach for the treatment of HCV infection.

  J. W Lee , H. D Han , M. M. K Shahzad , S. W Kim , L. S Mangala , A. M Nick , C Lu , R. R Langley , R Schmandt , H. S Kim , S Mao , J Gooya , C Fazenbaker , D Jackson , D. A Tice , C. N Landen , R. L Coleman and A. K. Sood
  Background

EphA2 is overexpressed in many types of human cancer but is absent or expressed at low levels in normal epithelial tissues. We investigated whether a novel immunoconjugate containing an anti-EphA2 monoclonal antibody (1C1) linked to a chemotherapeutic agent (monomethyl auristatin phenylalanine [MMAF]) through a noncleavable linker maleimidocaproyl (mc) had antitumor activity against ovarian cancer cell lines and tumor models.

Methods

Specificity of 1C1-mcMMAF was examined in EphA2-positive HeyA8 and EphA2-negative SKMel28 ovarian cancer cells by antibody binding and internalization assays. Controls were phosphate-buffered saline (PBS), 1C1, or control IgG-mcMMAF. Viability and apoptosis were investigated in ovarian cancer cell lines and tumor models (10 mice per group). Antitumor activities were tested in the HeyA8-luc and SKOV3ip1 orthotopic mouse models of ovarian cancer. Endothelial cells were identified by use of immunohistochemistry and anti-CD31 antibodies. All statistical tests were two-sided.

Results

The 1C1-mcMMAF immunoconjugate specifically bound to EphA2-positive HeyA8 cells but not to EphA2-negative cells and was internalized by HeyA8 cells. Treatment with 1C1-mcMMAF decreased the viability of HeyA8-luc cells in an EphA2-specific manner. In orthotopic mouse models, treatment with 1C1-mcMMAF inhibited tumor growth by 85%–98% compared with that in control mice (eg, for weight of HeyA8 tumors, 1C1-mcMMAF = 0.05 g and control = 1.03 g; difference = 0.98 g, 95% confidence interval [CI] = 0.40 to 1.58 g; P = .001). Even in bulkier disease models with HeyA8-luc cells, 1C1-mcMMAF treatment, compared with control treatment, caused regression of established tumors and increased survival of the mice (eg, 1C1-mcMMAF vs control, mean = 60.6 days vs 29.4 days; difference = 31.2 days, 95% CI = 27.6 to 31.2 days; P = .001). The antitumor effects of 1C1-mcMMAF therapy, in SKOV3ip1 tumors, for example, were statistically significantly related to decreased proliferation (eg, 1C1-mcMMAF vs control, mean = 44.1% vs 55.8% proliferating cells; difference = 11.7%, 95% CI = 2.45% to 20.9%; P = .01) and increased apoptosis of tumor cells (eg, 1C1-mcMMAF vs control, mean = 8.6% vs 0.9% apoptotic cells; difference = 7.7%, 95% CI = 3.8% to 11.7%; P < .001) and of mouse endothelial cells (eg, 1C1-mcMMAF vs control, mean 2.8% vs 0.4% apoptotic endothelial cells; difference = 2.4%, 95% CI = 1.4% to 4.6%; P = .034).

Conclusion

The 1C1-mcMMAF immunoconjugate had antitumor activity in preclinical models of ovarian carcinoma.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility