Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by S Jin
Total Records ( 4 ) for S Jin
  T Sakurai , S Trirongjitmoah , Y Nishibata , T Namita , M Tsuji , S. P Hui , S Jin , K Shimizu and H. Chiba

A simple method for the measurement of LDL particle sizes is needed in clinical laboratories because a predominance of small, dense LDL (sd LDL) has been associated with coronary heart disease. We applied dynamic light scattering (DLS) to measure lipoprotein particle sizes, with special reference to sd LDL.


Human serum lipoproteins isolated by a combination of ultracentrifugation and gel chromatography, or by sequential ultracentrifugation, were measured for particle size using DLS.


The sizes of polystyrene beads, with diameters of 21 and 28 nm according to the manufacturer, were determined by DLS as 19.3 ± 1.0 nm (mean ± SD, n = 11) and 25.5 ± 1.0 nm, respectively. The coefficients of variation for the 21 and 28 nm beads were 5.1% and 3.8% (within-run, n = 11), and 2.9% and 6.2% (between-run, n = 3), respectively. The lipoprotein sizes determined by DLS for lipoprotein fractions isolated by chromatography were consistent with the elution profile. Whole serum, four isolated lipoprotein fractions (CM + VLDL + IDL, large LDL, sd LDL and HDL) and a non-lipoprotein fraction isolated by sequential ultracentrifugation were determined by DLS to be 13.1 ± 7.5, 37.0 ± 5.2, 21.5 ± 0.8, 20.3 ± 1.1, 8.6 ± 1.5 and 8.8 ± 2.0 nm, respectively.


The proposed DLS method can differentiate the sizes of isolated lipoprotein particles, including large LDL and sd LDL, and might be used in clinical laboratories in combination with convenient lipoprotein separation.

  J Luan , J Yuan , X Li , S Jin , L Yu , M Liao , H Zhang , C Xu , Q He , B Wen , X Zhong , X Chen , H. L.Y Chan , J. J.Y Sung , B Zhou and C. Ding

Background: Variations in the hepatitis B virus (HBV) genome may develop spontaneously or under selective pressure from antiviral therapy. Such variations may confer drug resistance or affect virus replication capacity, resulting in failure of antiviral therapy.

Methods: A duplex PCR was used to amplify the region of the reverse transcriptase gene, the precore promoter, and the basal core promoter of the HBV genome. Four multiplex primer-extension reactions were used to interrogate 60 frequently observed HBV variants during antiviral therapy. Automated MALDI-TOF mass spectrometry (MS) was used for mutation detection. Capillary sequencing was used to confirm the MS results.

Results: The limit of quantification was 1000 HBV copies/mL for multiplex detection of HBV variants. Fifty-three variants (88.3%) were analyzed successfully in at least 90% of the sera from 88 treatment-naive patients and 80 patients with virologic breakthrough. MS was able to detect twice as many minor variants as direct sequencing while achieving close to full automation. MS and direct sequencing showed only 0.1% discordance in variant calls.

Conclusions: This platform based on multiplex primer extension and MALDI-TOF MS was able to detect 60 HBV variants in 4 multiplex reactions with accuracy and low detection limits.

  Y. K Tong , S Jin , R. W.K Chiu , C Ding , K.C. A Chan , T. Y Leung , L Yu , T. K Lau and Y.M. D. Lo

Background: The use of fetal DNA in maternal plasma for noninvasive prenatal diagnosis of trisomy 21 (T21) is an actively researched area. We propose a novel method of T21 detection that combines fetal-specific epigenetic and genetic markers.

Methods: We used combined bisulfite restriction analysis to search for fetal DNA markers on chromosome 21 that were differentially methylated in the placenta and maternal blood cells and confirmed any target locus with bisulfite sequencing. We then used methylation-sensitive restriction endonuclease digestion followed by microfluidics digital PCR analysis to investigate the identified marker. Chromosome-dosage analysis was performed by comparing the dosage of this epigenetic marker with that of the ZFY (zinc finger protein, Y-linked) gene on chromosome Y.

Results: The putative promoter of the HLCS (holocarboxylase synthetase) gene was hypermethylated in the placenta and hypomethylated in maternal blood cells. A chromosome-dosage comparison of the hypermethylated HLCS and ZFY loci could distinguish samples of T21 and euploid placental DNA. Twenty-four maternal plasma samples from euploid pregnancies and 5 maternal plasma samples from T21 pregnancies were analyzed. All but 1 of the euploid samples were correctly classified.

Conclusions: The epigenetic–genetic chromosome-dosage approach is a new method for noninvasive prenatal detection of T21. The epigenetic part of the analysis can be applied to all pregnancies. Because the genetic part of the analysis uses paternally inherited, fetal-specific genetic markers that are abundant in the genome, broad population coverage should be readily achievable. This approach has the potential to become a generally usable technique for noninvasive prenatal diagnosis.

  S Gross , R. A Cairns , M. D Minden , E. M Driggers , M. A Bittinger , H. G Jang , M Sasaki , S Jin , D. P Schenkein , S. M Su , L Dang , V. R Fantin and T. W. Mak

Mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2), are present in most gliomas and secondary glioblastomas, but are rare in other neoplasms. IDH1/2 mutations are heterozygous, and affect a single arginine residue. Recently, IDH1 mutations were identified in 8% of acute myelogenous leukemia (AML) patients. A glioma study revealed that IDH1 mutations cause a gain-of-function, resulting in the production and accumulation of 2-hydroxyglutarate (2-HG). Genotyping of 145 AML biopsies identified 11 IDH1 R132 mutant samples. Liquid chromatography-mass spectrometry metabolite screening revealed increased 2-HG levels in IDH1 R132 mutant cells and sera, and uncovered two IDH2 R172K mutations. IDH1/2 mutations were associated with normal karyotypes. Recombinant IDH1 R132C and IDH2 R172K proteins catalyze the novel nicotinamide adenine dinucleotide phosphate (NADPH)–dependent reduction of -ketoglutarate (-KG) to 2-HG. The IDH1 R132C mutation commonly found in AML reduces the affinity for isocitrate, and increases the affinity for NADPH and -KG. This prevents the oxidative decarboxylation of isocitrate to -KG, and facilitates the conversion of -KG to 2-HG. IDH1/2 mutations confer an enzymatic gain of function that dramatically increases 2-HG in AML. This provides an explanation for the heterozygous acquisition of these mutations during tumorigenesis. 2-HG is a tractable metabolic biomarker of mutant IDH1/2 enzyme activity.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility