Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by S Jiang
Total Records ( 3 ) for S Jiang
  G Hong , S Jiang , M Yu , Y Yang , F Li , F Xue and Z. Wei
 

The complete mitochondrial genome (mitogenome) of Artogeia melete was determined as being composed of 15,140 bp, including 13 protein-coding genes (PCGs), 2 rRNA genes, 22 tRNA genes, and one control region. The gene order of A. melete mitogenome is typical of Lepidoptera and differs from the insect ancestral type in the location of trnM. The A. melete mitogenome has a total of 119 bp of intergenic spacer sequences spread over 10 regions, ranging in sizes between 1 and 48 bp. The nucleotide composition of the A. melete mitogenome is also biased toward A + T nucleotides (79.77%), which is higher than that of Ochrogaster lunifer (77.84%), but lower than nine other lepidopterans sequenced. The PCGs have typical mitochondrial start codons, except for cox1, which contains the unusual CGA. The cox1, cox2, nad2, and nad5 genes of the A. melete mitogenome have incomplete stop codons (T). The A. melete A + T-rich region contains some conserved structures that are similar to those found in other lepidopteran mitogenomes, including a structure combining the motif ‘ATAGA’, a 19-bp poly(T) stretch, a microsatellite (AT)n element, and a 9-bp poly(A) upstream trnM. The A. melete mitogenome contains a duplicated 36-bp repeat element, which consists of a 26-bp core sequence flanked by 10-bp perfectly inverted repeats.

  S Jiang , T. A Gavrikova , A Pereboev and J. L. Messina
 

Recombinant adenovirus (Ad) vectors can initiate an inflammatory response, limiting its use in gene therapy and basic research. Despite increased efforts to better understand Ad infection, little is known about how it affects cellular metabolic responses. In the current studies, we explored the effects of Ad vectors on insulin signaling molecules and glucose homeostasis. Nonreplicative Ad vectors were injected into rats through the tail vein, and at 4–13 days postinjection insulin signaling and glucose tolerance were examined. Ad vector infection significantly reduced total levels of the insulin receptor (IR), and insulin receptor substrates 1 and 2 (IRS-1, IRS-2) in the liver of rats, resulting in decreased insulin-induced tyrosine phosphorylation of IR, IRS-1, and IRS-2, and decreased interaction of IRS-1 and IRS-2 with phosphoinositide 3-kinase (PI3K). In addition, Ad infection resulted in impaired systemic glucose homeostasis, which recovered by 13 days, after the protein levels of IR, IRS-1, and IRS-2 had started to normalize. Expression of a TNF inhibitor or Kupffer cell depletion attenuated the Ad vector-induced decreases of insulin signaling molecules, indicating a potential role of Kupffer cell activation in this process. These studies provide evidence that systemic administration of Ad vectors can impair insulin signaling in liver, resulting in altered systemic glucose metabolism. Thus, effects of Ad vector infection on insulin action and glucose metabolism need to be considered when Ad vectors are used in research or gene therapy and may be more broadly applicable to other viral agents.

  J Naylor , J Li , C. J Milligan , F Zeng , P Sukumar , B Hou , A Sedo , N Yuldasheva , Y Majeed , D Beri , S Jiang , V. A. L Seymour , L McKeown , B Kumar , C Harteneck , D O'Regan , S. B Wheatcroft , M. T Kearney , C Jones , K. E Porter and D. J. Beech
 

Rationale: Transient receptor potential melastatin (TRPM)3 is a calcium-permeable ion channel activated by the neurosteroid pregnenolone sulfate and positively coupled to insulin secretion in β cells. Although vascular TRPM3 mRNA has been reported, there is no knowledge of TRPM3 protein or its regulation and function in the cardiovascular system.

Objective: To determine the relevance and regulation of TRPM3 in vascular biology.

Methods and Results: TRPM3 expression was detected at mRNA and protein levels in contractile and proliferating vascular smooth muscle cells. Calcium entry evoked by pregnenolone sulfate or sphingosine was suppressed by TRPM3 blocking antibody or knock-down of TRPM3 by RNA interference. Low-level constitutive TRPM3 activity was also detected. In proliferating cells, channel activity was coupled negatively to interleukin-6 secretion via a calcium-dependent mechanism. In freshly isolated aorta, TRPM3 positively modulated contractile responses independently of L-type calcium channels. Concentrations of pregnenolone sulfate required to evoke responses were higher than the known plasma concentrations of the steroids, leading to a screen for other stimulators. β-Cyclodextrin was one of few stimulators of TRPM3, revealing the channels to be partially suppressed by endogenous cholesterol, the precursor of pregnenolone. Elevation of cholesterol further suppressed channel activity and loading with cholesterol to generate foam cells precluded observation of TRPM3 activity.

Conclusions: The data suggest functional relevance of TRPM3 in contractile and proliferating phenotypes of vascular smooth muscle cells, significance of constitutive channel activity, regulation by cholesterol, and potential value of pregnenolone sulfate in therapeutic vascular modulation.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility