Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by S Gruber
Total Records ( 2 ) for S Gruber
  G Kacerovsky Bielesz , M Chmelik , C Ling , R Pokan , J Szendroedi , M Farukuoye , M Kacerovsky , A. I Schmid , S Gruber , M Wolzt , E Moser , G Pacini , G Smekal , L Groop and M. Roden

We tested the hypothesis that short-term exercise training improves hereditary insulin resistance by stimulating ATP synthesis and investigated associations with gene polymorphisms.


We studied 24 nonobese first-degree relatives of type 2 diabetic patients and 12 control subjects at rest and 48 h after three bouts of exercise. In addition to measurements of oxygen uptake and insulin sensitivity (oral glucose tolerance test), ectopic lipids and mitochondrial ATP synthesis were assessed using1H and31P magnetic resonance spectroscopy, respectively. They were genotyped for polymorphisms in genes regulating mitochondrial function, PPARGC1A (rs8192678) and NDUFB6 (rs540467).


Relatives had slightly lower (P = 0.012) insulin sensitivity than control subjects. In control subjects, ATP synthase flux rose by 18% (P = 0.0001), being 23% higher (P = 0.002) than that in relatives after exercise training. Relatives responding to exercise training with increased ATP synthesis (+19%, P = 0.009) showed improved insulin sensitivity (P = 0.009) compared with those whose insulin sensitivity did not improve. A polymorphism in the NDUFB6 gene from respiratory chain complex I related to ATP synthesis (P = 0.02) and insulin sensitivity response to exercise training (P = 0.05). ATP synthase flux correlated with O2uptake and insulin sensitivity.


The ability of short-term exercise to stimulate ATP production distinguished individuals with improved insulin sensitivity from those whose insulin sensitivity did not improve. In addition, the NDUFB6 gene polymorphism appeared to modulate this adaptation. This finding suggests that genes involved in mitochondrial function contribute to the response of ATP synthesis to exercise training.

  S Gruber , G Vaaje Kolstad , F Matarese , R Lopez Mondejar , C. P Kubicek and V. Seidl Seiboth

Fungi have a plethora of chitinases, which can be phylogenetically divided into three subgroups (A, B and C). Subgroup C (sgC) chitinases are especially interesting due to their multiple carbohydrate-binding modules, but they have not been investigated in detail yet. In this study, we analyzed sgC chitinases in the mycoparasites Trichoderma atroviride and Trichoderma virens. The expression of sgC chitinase genes in T. atroviride was induced during mycoparasitism of the fungal prey Botrytis cinerea, but not Rhizoctonia solani and correspondingly only by fungal cell walls of the former. Interestingly, only few sgC chitinase genes were inducible by chitin, suggesting that non-chitinous cell wall components can act as inducers. In contrast, the transcriptional profile of the most abundantly expressed sgC chitinase gene tac6 indicated a role of the protein in hyphal network formation. This shows that sgC chitinases have diverse functions and are not only involved in the mycoparasitic attack. However, sequence analysis and 3D modelling revealed that TAC6 and also its ortholog in T. virens have potentially detrimental deletions in the substrate-binding site and are thus probably not catalytically active enzymes. Genomic analysis showed that the genes neighboring sgC chitinases often encode proteins that are solely composed of multiple LysM modules, which were induced by similar stimuli as their neighboring sgC chitinase genes. This study provides first insights into fungal sgC chitinases and their associated LysM proteins.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility