Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by S Fujiwara
Total Records ( 2 ) for S Fujiwara
  O Tassy , D Dauga , F Daian , D Sobral , F Robin , P Khoueiry , D Salgado , V Fox , D Caillol , R Schiappa , B Laporte , A Rios , G Luxardi , T Kusakabe , J. S Joly , S Darras , L Christiaen , M Contensin , H Auger , C Lamy , C Hudson , U Rothbacher , M. J Gilchrist , K. W Makabe , K Hotta , S Fujiwara , N Satoh , Y Satou and P. Lemaire
 

Developmental biology aims to understand how the dynamics of embryonic shapes and organ functions are encoded in linear DNA molecules. Thanks to recent progress in genomics and imaging technologies, systemic approaches are now used in parallel with small-scale studies to establish links between genomic information and phenotypes, often described at the subcellular level. Current model organism databases, however, do not integrate heterogeneous data sets at different scales into a global view of the developmental program. Here, we present a novel, generic digital system, NISEED, and its implementation, ANISEED, to ascidians, which are invertebrate chordates suitable for developmental systems biology approaches. ANISEED hosts an unprecedented combination of anatomical and molecular data on ascidian development. This includes the first detailed anatomical ontologies for these embryos, and quantitative geometrical descriptions of developing cells obtained from reconstructed three-dimensional (3D) embryos up to the gastrula stages. Fully annotated gene model sets are linked to 30,000 high-resolution spatial gene expression patterns in wild-type and experimentally manipulated conditions and to 528 experimentally validated cis-regulatory regions imported from specialized databases or extracted from 160 literature articles. This highly structured data set can be explored via a Developmental Browser, a Genome Browser, and a 3D Virtual Embryo module. We show how integration of heterogeneous data in ANISEED can provide a system-level understanding of the developmental program through the automatic inference of gene regulatory interactions, the identification of inducing signals, and the discovery and explanation of novel asymmetric divisions.

  T Kanai , S Takedomi , S Fujiwara , H Atomi and T. Imanaka
 

The hyperthermophilic archaeon Thermococcus kodakaraensis harbors a putative transcriptional regulator (Tk-Phr) that is orthologous to the Pyrococcus furiosus Phr (Pf-Phr). Pf-Phr, a transcriptional regulator, represses genes encoding the small heat shock protein (sHSP), AAA+ ATPase and Pf-Phr itself under normal growth temperatures. Here we constructed a gene disruption strain of Tk-Phr (strain KHR1). KHR1 cells showed similar specific growth rates with those of the wild-type strain under various temperatures. A whole genome microarray analysis was performed between KHR1 and wild-type cells grown at 80°C. Transcript levels of more than 20 genes were significantly higher in KHR1 cells. Most genes contained a sequence motif virtually identical to that of Pf-Phr in their 5'-flanking regions. The Tk-Phr regulon included genes encoding sHSP, AAA+ ATPase, prefoldin, RecA superfamily ATPase and Tip49. On the other hand, more than half of the members in the regulon encoded conserved/hypothetical proteins, raising the possibility that these proteins participate in unidentified processes of the heat shock response. In contrast, Tk-Phr deletion did not lead to dramatic increase in transcript and protein levels of a chaperonin (CpkB) previously shown to respond to heat shock, suggesting the presence of a second, Phr-independent heat shock response mechanism in T. kodakaraensis.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility