Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by S Chakrabarti
Total Records ( 2 ) for S Chakrabarti
  N Buchon , N. A Broderick , S Chakrabarti and B. Lemaitre
 

Gut homeostasis is controlled by both immune and developmental mechanisms, and its disruption can lead to inflammatory disorders or cancerous lesions of the intestine. While the impact of bacteria on the mucosal immune system is beginning to be precisely understood, little is known about the effects of bacteria on gut epithelium renewal. Here, we addressed how both infectious and indigenous bacteria modulate stem cell activity in Drosophila. We show that the increased epithelium renewal observed upon some bacterial infections is a consequence of the oxidative burst, a major defense of the Drosophila gut. Additionally, we provide evidence that the JAK–STAT (Janus kinase–signal transducers and activators of transcription) and JNK (c-Jun NH2 terminal kinase) pathways are both required for bacteria-induced stem cell proliferation. Similarly, we demonstrate that indigenous gut microbiota activate the same, albeit reduced, program at basal levels. Altered control of gut microbiota in immune-deficient or aged flies correlates with increased epithelium renewal. Finally, we show that epithelium renewal is an essential component of Drosophila defense against oral bacterial infection. Altogether, these results indicate that gut homeostasis is achieved by a complex interregulation of the immune response, gut microbiota, and stem cell activity.

  A. E Awad , V Kandalam , S Chakrabarti , X Wang , J. M Penninger , S. T Davidge , G. Y Oudit and Z. Kassiri
 

Tumor necrosis factor (TNF) is an inflammatory cytokine that is upregulated in a number of cardiomyopathies. Adverse cardiac remodeling and dilation result from degradation of the extracellular matrix by matrix metalloproteinases (MMPs). We investigated whether TNF can directly trigger expression and activation of MMPs in cardiac cells. We compared MMP expression profile and activities between primary cultures of mouse neonatal cardiomyocytes and cardiofibroblasts and in cellular and extracellular compartments. In response to recombinant TNF (rTNF, 20 ng/ml), cardiomyocytes exhibited faster and more pronounced superoxide production compared with cardiofibroblasts, concomitant with increased expression of several MMPs. MMP9 levels increased more rapidly and about twofold more in cardiomyocytes than in cardiofibroblasts. TNF did not induce MMP2 expression. Expression of collagenases (MMP8, MMP12, MMP13, and MMP14) increased significantly, while total collagenase activity increased to a greater degree in conditioned medium of cardiomyocytes than in cardiofibroblasts. rTNF-mediated MMP expression and activation were dependent on superoxide production and were blocked by apocynin, an NADPH oxidase inhibitor. We identified phosphatidylinositol 3-kinase (PI3K) as a key factor in TNF-mediated events since TNF-induced superoxide production, MMP expression, and activity were significantly suppressed in cardiomyocytes and cardiofibroblasts deficient in PI3K. We further demonstrated that the TNF-superoxide-MMP axis of events is in fact activated in heart disease in vivo. Wild-type and TNF–/– mice subjected to cardiac pressure overload revealed that TNF deficiency resulted in reduced superoxide levels, collagenase activities, PI3K activity, and fibrosis leading to attenuated cardiac dilation and dysfunction. Our study demonstrates that TNF triggers expression and activation of MMPs faster and stronger in cardiomyocytes than in cardiofibroblasts in a superoxide-dependent manner and via activation of PI3K, thereby contributing to adverse myocardial remodeling in disease.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility