Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by S Capellari
Total Records ( 2 ) for S Capellari
  R Lodi , P Parchi , C Tonon , D Manners , S Capellari , R Strammiello , R Rinaldi , C Testa , E Malucelli , B Mostacci , G Rizzo , G Pierangeli , P Cortelli , P Montagna and B. Barbiroli
 

The intra vitam diagnosis of prion disease is challenging and a definite diagnosis still requires neuropathological examination in non-familial cases. Magnetic resonance imaging has gained increasing importance in the diagnosis of prion disease. The aim of this study was to compare the usefulness of different magnetic resonance imaging sequences and proton magnetic resonance spectroscopy in the differential diagnosis of patients with rapidly progressive neurological signs compatible with the clinical diagnosis of sporadic prion disease. Twenty-nine consecutive patients with an initial diagnosis of possible or probable sporadic prion disease, on the basis of clinical and electroencephalography features, were recruited. The magnetic resonance protocol included axial fluid-attenuated inversion recovery-T2- and diffusion-weighted images, and proton magnetic resonance spectroscopy of the thalamus, striatum, cerebellum and occipital cortex. Based on the clinical follow-up, genetic studies and neuropathology, the final diagnosis was of prion disease in 14 patients out of 29. The percentage of correctly diagnosed cases was 86% for diffusion-weighted imaging (hyperintensity in the striatum/cerebral cortex), 86% for thalamic N-acetyl-aspartate to creatine ratio (cutoff ≤1.21), 90% for thalamic N-acetyl-aspartate to myo-inositol (mI) ratio (cutoff ≤1.05) and 86% for cerebral spinal fluid 14-3-3 protein. All the prion disease patients had N-acetyl-aspartate to creatine ratios ≤1.21 (100% sensitivity and 100% negative predictive value) and all the non-prion patients had N-acetyl-aspartate to myo-inositol ratios >1.05 (100% specificity and 100% positive predictive value). Univariate logistic regression analysis showed that the combination of thalamic N-acetyl-aspartate to creatine ratio and diffusion-weighted imaging correctly classified 93% of the patients. The combination of thalamic proton magnetic resonance spectroscopy (10 min acquisition duration) and brain diffusion-weighted imaging (2 min acquisition duration) may increase the diagnostic accuracy of the magnetic resonance scan. Both sequences should be routinely included in the clinical work-up of patients with suspected prion disease.

  P Parchi , M Cescatti , S Notari , W. J Schulz Schaeffer , S Capellari , A Giese , W. Q Zou , H Kretzschmar , B Ghetti and P. Brown
 

Six clinico-pathological phenotypes of sporadic Creutzfeldt–Jakob disease have been characterized which correlate at the molecular level with the type (1 or 2) of the abnormal prion protein, PrPTSE, present in the brain and with the genotype of polymorphic (methionine or valine) codon 129 of the prion protein gene. However, to what extent these phenotypes with their corresponding molecular combinations (i.e. MM1, MM2, VV1 etc.) encipher distinct prion strains upon transmission remains uncertain. We studied the PrPTSE type and the prion protein gene in archival brain tissues from the National Institutes of Health series of transmitted Creutzfeldt–Jakob disease and kuru cases, and characterized the molecular and pathological phenotype in the affected non-human primates, including squirrel, spider, capuchin and African green monkeys. We found that the transmission properties of prions from the common sporadic Creutzfeldt–Jakob disease MM1 phenotype are homogeneous and significantly differ from those of sporadic Creutzfeldt–Jakob disease VV2 or MV2 prions. Animals injected with iatrogenic Creutzfeldt–Jakob disease MM1 and genetic Creutzfeldt–Jakob disease MM1 linked to the E200K mutation showed the same phenotypic features as those infected with sporadic Creutzfeldt–Jakob disease MM1 prions, whereas kuru most closely resembled the sporadic Creutzfeldt–Jakob disease VV2 or MV2 prion signature and neuropathology. The findings indicate that two distinct prion strains are linked to the three most common Creutzfeldt–Jakob disease clinico-pathological and molecular subtypes and kuru, and suggest that kuru may have originated from cannibalistic transmission of a sporadic Creutzfeldt–Jakob disease of the VV2 or MV2 subtype.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility