Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by Robert A. Hegele
Total Records ( 3 ) for Robert A. Hegele
  Paul N. Durrington , Valentine Charlton-Menys , Christopher J. Packard , Muriel J. Caslake , Jian Wang , Deepak Bhatnagar , John Scott and Robert A. Hegele
 

Background

Familial hypobetalipoproteinemia (FHBL) is a co-dominant disorder associated with low circulating levels of low-density lipoprotein (LDL) cholesterol and apolipoprotein B100 (ApoB). A proband was identified in whom the condition was due to an E110X mutation of APOB, creating a particularly early truncation of ApoB in the region of the molecule necessary for very-low-density lipoprotein (VLDL) assembly. The mutation was also associated with nonalcoholic fatty liver disease.

Objective

To assess the effect of the mutation on metabolism and the formation of VLDL and LDL subfractions.

Results

Both the proband and his son, who had the same mutation, had low LDL cholesterol and decreased ApoB, but an increased small-dense LDL level. Lipoprotein profiles were normal in the proband's sister and grandson, in whom the mutation was absent. In the proband. there was a profoundly diminished rate of production of VLDL-2. VLDL-1 production, however, was relatively preserved and, because of its decreased catabolism, its pool size was increased. Direct formation of intermediate-density lipoprotein (IDL) and LDL was undetectable. Intermediate-density lipoprotein catabolism was greatly increased and its conversion to LDL was increased. The LDL produced was entirely small-dense LDL. High-density lipoprotein cholesterol levels were low, perhaps also related to the relative increase in VLDL-1, which is an avid acceptor of cholesteryl ester.

Conclusions

This novel mutation provides evidence to support the hypothesis that hepatic production of large VLDL-1 leads to the creation of small-dense LDL.

  Anne Gangloff , Jean Bergeron , Patrick Couture , Rebecca Martins , Robert A. Hegele and Claude Gagne
  Not available
  Esther Y. Lee , Peter T. Klementowicz , Robert A. Hegele , Bela F. Asztalos and Ernst J. Schaefer
  A 61-year-old white man of European ancestry with significant coronary heart disease since age 42 years and marked high-density lipoprotein (HDL) deficiency (HDL cholesterol 1 mg/dL) was evaluated. His fasting low-density lipoprotein cholesterol level was 42 mg/dL, and his triglycerides were 417 mg/dL on therapy with rosuvastatin 40 mg/day, ezetimibe 10 mg/day, fenofibrate 145 mg/day, and extended-release niacin 2 g/day. Further analysis of his plasma revealed an apolipoprotein (apo) A-I level of 23.5 mg/dL (approximately 20% of normal), and the absence of small alpha-4 HDL, medium alpha-3 HDL, and very large alpha-1 HDL, with only very small pre-beta-1 HDL and large alpha-2 HDL being present. APOA-I gene sequencing revealed a novel heterozygous in-frame insertion mutation with duplication of nucleotides 1535 through 1552 inserted at position 1553, causing a new amino acid glycine at codon 157 and a duplication of amino acids alanine, arginine, alanine, histidine, and leucine at codons 158-162. This novel apoA-I mutation results in the formation of apoA-I that appears to have abnormal lipid binding properties, resulting in impaired reverse cholesterol transport, probable enhanced clearance, and premature coronary heart disease.
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility