Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by Rajendra Prasad
Total Records ( 4 ) for Rajendra Prasad
  Raman Manoharlal , Naseem Akhtar Gaur , Sneh Lata Panwar , Joachim Morschhauser and Rajendra Prasad
  Many azole-resistant (AR) clinical isolates of Candida albicans display increased expression of the drug transporters CDR1 and CDR2. In this study, we evaluate the molecular mechanisms that contribute to the maintenance of constitutively high CDR1 transcript levels in two matched pairs of azole-susceptible (AS) and AR clinical isolates of C. albicans. To address this, we use reporter constructs of GFP and lacZ fused either to the CDR1 promoter (PCDR1-GFP/lacZ; transcriptional fusion) or to the CDR1 open reading frame (PCDR1-CDR1-GFP/lacZ; translational fusion) integrated at the native CDR1 locus. It is observed that expression of the two reporter genes as a transcriptional fusion in the AR isolates is higher than that in matched AS isolates. However, the difference in the reporter activity between the AS and AR isolates is even greater for the translational fusions, indicating that the sequences within the CDR1 coding region also contribute to its increased expression in AR isolates. Further analysis of these observations by transcription run-on assays demonstrated a ∼5- to 7-fold difference in the transcription initiation rates for the AR isolates from those for their respective matched AS isolates. Measurement of mRNA stability showed that the half-life of CDR1 mRNA in the AR isolates was threefold higher than that in the corresponding AS isolates. Our results demonstrate that both increased CDR1 transcription and enhanced CDR1 mRNA stability contribute to the overexpression of CDR1 in AR C. albicans isolates.
  Ritu Pasrija , Sneh Lata Panwar and Rajendra Prasad
  In this study, we compared the effects of altered membrane lipid composition on the localization of two membrane drug transporters from different superfamilies of the pathogenic yeast Candida albicans. We demonstrated that in comparison to the major facilitator superfamily multidrug transporter CaMdr1p, ATP-binding cassette transporter CaCdr1p of C. albicans is preferentially localized within detergent-resistant membrane (DRM) microdomains called ‘rafts.’ Both CaCdr1p and CaMdr1p were overexpressed as green fluorescent protein (GFP)-tagged proteins in a heterologous host Saccharomyces cerevisiae, wherein either sphingolipid (Δsur4 or Δfen1 or Δipt1) or ergosterol (Δerg24 or Δerg6 or Δerg4) biosynthesis was compromised. CaCdr1p-GFP, when expressed in the above mutant backgrounds, was not correctly targeted to plasma membranes (PM), which also resulted in severely impaired drug resistance. In contrast, CaMdr1p-GFP displayed no sorting defect in the mutant background and remained properly surface localized and displayed no change in drug resistance. Our data clearly show that CaCdr1p is selectively recruited, over CaMdr1p, to the DRM microdomains of the yeast PM and that any imbalance in the raft lipid constituents results in missorting of CaCdr1p.
  Roland Wakie , Iwona Gabriel , Rajendra Prasad , Jeffrey M. Becker , John W. Payne and Stawomir Milewski
  The susceptibility to several oligopeptide and amino acid antifungals of a Saccharomyces cerevisiae strain carrying multiple deletions in yeast multidrug resistance genes was compared to transformants containing the CDR1, CDR2, or MDR1 genes that encode the major Candida albicans drug efflux pumps. Recombinant yeast strains overexpressing Cdr1p and Cdr2p showed enhanced susceptibilities to all tested oligopeptide antifungals. The enhanced susceptibilities of multidrug-resistant yeast strains to oligopeptide antifungals corresponded to higher rates of oligopeptide uptake. Yeast cells overexpressing Cdr1p or Cdr2p effluxed protons at higher rates than the reference cells lacking these ABC transporters. An increased plasma membrane electrochemical gradient caused by the functional overexpression of Cdr1p or Cdr2p appeared to increase cellular susceptibility to oligopeptide antifungals by stimulating their uptake via oligopeptide permeases.
  Neetu Singh , Rajendra Prasad and Subrato Bhattacharya
  The title compounds Ph3PbSPbPh3 (1) and Ph3SnSSnPh3 (2) were prepared in high yields by a reaction of Na2S, respectively, with Ph3Pb(SOCMe) and Ph3Sn(SOCMe). X-ray crystallographic and density functional studies were made to understand the structure and bonding in these molecules. Though the Pb–Pb distance in 1 is only marginally shorter than the sum of the corresponding van der Waals’ radii, a smaller Pb–S–Pb angle suggests for a Pb···Pb interaction. DFT calculations were performed to analyse the nature of M···M interaction in 1 and 2. Strong intramolecular π–π interactions subsist between the different phenyl rings of the molecules.
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility