Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by R.E. OLSEN
Total Records ( 4 ) for R.E. OLSEN
  The effects of partial replacement of fish meal (FM) with meal made from northern krill (Thysanoessa inermis), Antarctic krill (Euphausia superba) or Arctic amphipod (Themsto libellula) as protein source in the diets for Atlantic salmon (Salmo salar L.) and Atlantic halibut (Hippoglossus hippoglossus L.) on growth, feed conversion, macro-nutrient utilization, muscle chemical composition and fish welfare were studied. Six experimental diets were prepared using a low-temperature FM diet as control. The other diets included northern krill where 20, 40 or 60% of the dietary FM protein was replaced with protein from northern krill, and two diets where the FM protein was replaced with protein from Antarctic krill or Arctic amphipod at 40% protein replacement level. All diets were iso-nitrogenous and iso-caloric. Atlantic salmon grew from 410 g to approximately 1500 g during the 160 day experiment, and Atlantic halibut grew from 345 g to 500–600 g during the 150 day experiment. Inclusion of krill in the diets enhanced specific growth rate in salmon, especially during the first 100 days (P < 0.01), and in a dose–response manner in halibut for over the 150 day feeding period (P < 0.05). Feed conversion ratio did not differ between dietary treatments, and no difference was found in dry matter digestibility, protein digestibility and fish muscle composition. Good growth rates, blood parameters within normal ranges and low mortalities in all experimental treatments indicted that fish health was not affected either Atlantic salmon or Atlantic halibut fed the various zooplankton diets.
  Wax esters (WE) in copepods constitute huge natural marine lipid resources, which can contribute as future lipid source in formulated diets in aquaculture, and thereby reduce the pressure on use of marine resources at higher trophic levels. The present study was undertaken to investigate factors affecting WE digestibility, including production of bile and lipases in Atlantic salmon fed diets containing high proportions of oil derived from copepods. Individually tagged postsmolt Atlantic salmon (initial weight 250g) were distributed into three dietary groups in triplicate tanks and fed either a fish oil supplemented diet or diets where 50% or 100% of the fish oil was replaced with oil extracted from Calanus finmarchicus. WE accounted for 30.7% or 47.7% of the lipids in these latter diets, respectively. Over the 100day feeding period, the salmon fed the fish oil diet displayed a significantly higher specific growth rate (SGR; 0.74) than fish fed the 100% Calanus oil diet (SGR; 0.67). The apparent digestibility coefficient of total lipid and total fatty acids was significantly higher in salmon fed the fish oil and the mixed diet compared to fish fed the pure Calanus oil diet. However, the fish appeared to enhance the lipid digestive capacity by increasing bile volume and the lipolytic activity. It is concluded that the digestion of WE in Atlantic salmon is poorer than for triacylglycerols. However, the digestive capacity is increased by elevating the bile content and lipase activity. At very high levels however, WE of lipid between 37.5% and 47.7%, are there no more compensation and WE utilisation decreases.
  Calanoid copepods are a rich source of marine lipid for potential use in aquafeeds. Copepod oil is primarily composed of wax esters (WE) and there are concerns over the efficiency of wax ester, versus triacylglycerol (TAG), digestion and utilization in fish. As smoltification represents a period of major physiological adaptation, the present study examined the digestibility of a high WE diet (Calanus oil; 48% WE, 26% TAG), compared with a TAG diet (fish oil; 58% TAG), in Atlantic salmon freshwater presmolts and seawater postsmolts, of similar age (9months) and weight (112g and 141g initial, respectively), over a 98-day period at constant temperature. Fish grew significantly better, and possessed lower feed conversion ratios (FCR), in seawater than freshwater. However, total lipid apparent digestibility coefficient (ADC) values were significantly lower in seawater fish, as were total fasted bile volumes. Dietary Calanus oil also had a significant effect, reducing growth and lipid ADC values in both freshwater and seawater groups. Postsmolts fed dietary Calanus oil had the poorest lipid ADC values and analysis of faecal lipid class composition revealed that 33% of the remaining lipid was WE and 32% fatty alcohols. Dietary prevalent 22:1n-11 and 20:1n-9 fatty alcohols were particularly poorly utilized. A decrease in primary bile acid, taurocholate, concentration was observed in the bile of dietary Calanus oil groups which could be related to the lower cholesterol content of the diet. The dietary WE:TAG ratio is discussed in relation to life stage and biliary intestinal adaptation to the seawater environment postsmoltification.
  Previous studies had shown that wax ester-rich lipid extracted from calanoid copepods could be a useful alternative to fish oil as a provider of long-chain n-3 polyunsaturated fatty acids in diets for use in salmon aquaculture. Effective utilization of wax ester requires digestion and metabolism in the intestine with the fatty alcohol component being oxidized to fatty acid in intestinal cells through the combined activities of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH). We studied wax ester utilization in Atlantic salmon using a candidate gene approach, focusing on ADH and ALDH as sequence information was available for these genes, including fish sequences, facilitating isolation of the cDNAs. Here, we report on the isolation and cloning of full-length cDNAs for ADH3 and ALDH3a2 genes from salmon intestinal tissue. Functional characterization by heterologous expression in the yeast, Saccharomyces cerevisiae, showed the products of these cDNAs had long-chain ADH and ALDH enzyme activities. Thus, ADH3 was capable of oxidizing long-chain fatty alcohol, and ALDH3a2 was capable of oxidizing long-chain fatty aldehyde to the corresponding fatty acid. The genes were highly expressed in intestinal tissue, particularly pyloric caeca, but their expression was not increased in salmon fed dietary copepod oil in comparison to fish fed fish oil.
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility