Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by R. HORN
Total Records ( 3 ) for R. HORN
  X.Y. WANG , Y. ZHAO and R. HORN
  Depth distribution of soil wettability and its correlations with vegetation type, soil texture, and pH were investigated under various land use (cropland, grassland, and forestland) and soil management systems. Wettability was evaluated by contact angle with the Wilhelmy plate method. Water repellency was likely to be present under permanently vegetated land, but less common on tilled agricultural land. It was mostly prevalent in the topsoil, especially in coarse-textured soils, and decreased in the subsoil. However, the depth dependency of wettability could not be derived from the investigated wide range of soils. The correlation and multiple regression analysis revealed that the wettability in repellent soils was affected more by soil organic carbon (SOC) than by soil texture and pH, whereas in wettable soils, soil texture and pH were more effective than SOC. Furthermore, the quality of SOC seemed to be more important in determining wettability than its quantity, as proofed by stronger hydrophobicity under coniferous than under deciduous forestland. Soil management had a minor effect on wettability if conventional and conservation tillage or different grazing intensities were considered.
  S. Peth , R. Horn , F. Beckmann , T. Donath , J. Fischer and A. J. M. Smucker
  Pore network geometries of intra-aggregate pore spaces are of great importance for water and ion flux rates controlling C sequestration and bioremediation. Advances in non-invasive three-dimensional imaging techniques such as synchrotron-radiation-based x-ray microtomography (SR-µCT), offer excellent opportunities to study the interrelationships between pore network geometry and physical processes at spatial resolutions of a few micrometers. In this paper we present quantitative three-dimensional pore-space geometry analyses of small scale (∼5 mm across) soil aggregates from different soil management systems (conventionally tilled vs. grassland). Reconstructed three-dimensional microtomography images at approximate isotropic voxel resolutions between 3.2 and 5.4 µm were analyzed for pore-space morphologies using a suite of image processing algorithms associated with the software published by Lindquist et al. Among the features quantified were pore-size distributions (PSDs), throat-area distributions, effective throat/pore radii ratios as well as frequency distributions of pore channel lengths, widths, and flow path tortuosities. We observed differences in storage and transport relevant pore-space morphological features between the two aggregates. Nodal pore volumes and throat surface areas were significantly smaller for the conventionally tilled (Conv.T.) aggregate (mode ≈ 7.9 x 10–7 mm3/≈ 63 µm2) than for the grassland aggregate (mode ≈ 5.0 x 10–6 mm3/≈ 400 µm2), respectively. Path lengths were shorter for the Conv.T. aggregate (maximum lengths < 200 µm) compared with the grassland aggregate (maximum lengths > 600 µm). In summary, the soil aggregate from the Conv.T site showed more gas and water transport limiting micromorphological features compared with the aggregate from the grassland management system.
  C. A Ahern , A. L Eastwood , D. A Dougherty and R. Horn
 

Slow inactivation of Kv1 channels involves conformational changes near the selectivity filter. We examine such changes in Shaker channels lacking fast inactivation by considering the consequences of mutating two residues, T449 just external to the selectivity filter and V438 in the pore helix near the bottom of the selectivity filter. Single mutant T449F channels with the native V438 inactivate very slowly, and the canonical foot-in-the-door effect of extracellular tetraethylammonium (TEA) is not only absent, but the time course of slow inactivation is accelerated by TEA. The V438A mutation dramatically speeds inactivation in T449F channels, and TEA slows inactivation exactly as predicted by the foot-in-the-door model. We propose that TEA has this effect on V438A/T449F channels because the V438A mutation produces allosteric consequences within the selectivity filter and may reorient the aromatic ring at position 449. We investigated the possibility that the blocker promotes the collapse of the outer vestibule (spring-in-the-door) in single mutant T449F channels by an electrostatic attraction between a cationic TEA and the quadrupole moments of the four aromatic rings. To test this idea, we used in vivo nonsense suppression to serially fluorinate the introduced aromatic ring at the 449 position, a manipulation that withdraws electrons from the aromatic face with little effect on the shape, net charge, or hydrophobicity of the aromatic ring. Progressive fluorination causes monotonically enhanced rates of inactivation. In further agreement with our working hypothesis, increasing fluorination of the aromatic gradually transforms the TEA effect from spring-in-the-door to foot-in-the-door. We further substantiate our electrostatic hypothesis by quantum mechanical calculations.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility