Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by R. Chen
Total Records ( 6 ) for R. Chen
  S Huang , A Zhang , G Ding and R. Chen

Aldosterone (Aldo) stimulates glomerular mesangial cell (MC) proliferation, in part, through an ERK1/2-dependent pathway. In this study, we examined whether Aldo activation of ERK1/2 in MC is mediated through redox-dependent EGF receptor (EGFR) transactivation, as well as the involvement of other signaling mechanisms in Aldo-induced MC proliferation. Aldo increased human MC proliferation, as determined by [3H]thymidine incorporation and cell counts. This increase in proliferation was blocked by inhibition of the mineralocorticoid receptor (MR). Continuing our observations downstream in the signaling pathway, we examined the ability of Aldo to activate both the Ras/MAPK and the PI3K signaling pathways. Aldo increased Ki-RasA and Ki-RasA:GTP levels, and sequentially phosphorylated c-Raf, MAPK kinase (MEK1/2), and ERK1/2. Ki-RasA small interfering RNA (siRNA), the c-Raf inhibitor GW5074, and the MEK1/2 inhibitor PD98059 reduced Aldo-induced cell proliferation by ~65%. Aldo also increased phosphorylation of PI3K, Akt, the mammalian target of rapamycin (mTOR), and the 70-kDa ribosomal S6 kinase (p70S6K1). Inhibition of the PI3K pathways by the selective PI3K inhibitor LY 294002, an Akt inhibitor, or the mTOR inhibitor rapamycin reduced cell proliferation by 51%. Combining LY 294002 and PD98059 completely blocked Aldo-induced MC proliferation. Next, we confirmed that Aldo exerts its effect on MAPK and PI3K activation, as well as on cell proliferation, by activating the EGFR. Pretreatment with the EGFR antagonist AG1478 inhibited MC proliferation, as well as the activation of Ras/MAPK and PI3K/Akt, suggesting that Ras/MAPK and PI3K/Akt activation occur downstream of EGFR activation. Finally, we examined the role of reactive oxygen species (ROS) in Aldo-induced transactivation of the EGFR. Aldo-induced ROS were predominantly generated by mitochondria. Pretreatment with the antioxidant N-acetyl-l-cysteine, catalase, SOD, mitochondrial respiratory chain complex I inhibitor rotenone (Rot), NADPH oxidase inhibitor apocynin, and DPI significantly inhibited Aldo-stimulated MC proliferation as well as EGFR transactivation. However, Rot reduced MC proliferation more potently than apocynin and DPI. In conclusion, Aldo stimulated cell proliferation through MR-mediated, redox-sensitive EGFR transactivation, which was dependent on the Ki-RasA/c-Raf/MEK/ERK and PI3K/Akt/mTOR/p70S6K1 signaling pathways in human MCs.

  Z Ni , C Gunraj , A. J Nelson , I J Yeh , G Castillo , T Hoque and R. Chen

Interhemispheric inhibition (IHI) refers to the neurophysiological mechanism in which one hemisphere of the brain inhibits the opposite hemisphere. IHI can be studied by transcranial magnetic stimulation using a conditioning-test paradigm. We investigated IHI from 5 motor related cortical areas in the right hemisphere to the left primary motor cortex (M1). These areas are hand and face representations of M1, dorsal premotor cortex, somatosensory cortex, and dorsolateral prefrontal cortex. Test stimulus was delivered to the left M1 and conditioning stimulus (CS) was delivered to one of 5 motor related cortical areas in the right hemisphere. The time course of IHI, effects of different CS intensities and current directions on IHI were tested. Maximum IHI was found at interstimulus intervals of ~10 ms (short latency IHI, SIHI) and ~50 ms (long latency IHI, LIHI) for the motor related areas tested. LIHI could be elicited over a wide range of CS intensities, whereas SIHI required higher CS intensities. We conclude that there are 2 distinct phases of IHI from motor related cortical areas to the opposite M1 through the corpus callosum, and they are mediated by different neuronal populations.

  H Wang , A Chattopadhyay , Z Li , B Daines , Y Li , C Gao , R Gibbs , K Zhang and R. Chen

One of the key advantages of using Drosophila melanogaster as a genetic model organism is the ability to conduct saturation mutagenesis screens to identify genes and pathways underlying a given phenotype. Despite the large number of genetic tools developed to facilitate downstream cloning of mutations obtained from such screens, the current procedure remains labor intensive, time consuming, and costly. To address this issue, we designed an efficient strategy for rapid identification of heterozygous mutations in the fly genome by combining rough genetic mapping, targeted DNA capture, and second generation sequencing technology. We first tested this method on heterozygous flies carrying either a previously characterized dac5 or sensE2 mutation. Targeted amplification of genomic regions near these two loci was used to enrich DNA for sequencing, and both point mutations were successfully identified. When this method was applied to uncharacterized twr mutant flies, the underlying mutation was identified as a single-base mutation in the gene Spase18-21. This targeted-genome-sequencing method reduces time and effort required for mutation cloning by up to 80% compared with the current approach and lowers the cost to <$1000 for each mutant. Introduction of this and other sequencing-based methods for mutation cloning will enable broader usage of forward genetics screens and have significant impacts in the field of model organisms such as Drosophila.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility