Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by R. S Ahima
Total Records ( 2 ) for R. S Ahima
  D. M Faleck , K Ali , R Roat , M. J Graham , R. M Crooke , R Battisti , E Garcia , R. S Ahima and Y. Imai
 

The excess accumulation of lipids in islets is thought to contribute to the development of diabetes in obesity by impairing β-cell function. However, lipids also serve a nutrient function in islets, and fatty acids acutely increase insulin secretion. A better understanding of lipid metabolism in islets will shed light on complex effects of lipids on β-cells. Adipose differentiation-related protein (ADFP) is localized on the surface of lipid droplets in a wide range of cells and plays an important role in intracellular lipid metabolism. We found that ADFP was highly expressed in murine β-cells. Moreover, islet ADFP was increased in mice on a high-fat diet (3.5-fold of control) and after fasting (2.5-fold of control), revealing dynamic changes in ADFP in response to metabolic cues. ADFP expression was also increased by addition of fatty acids in human islets. The downregulation of ADFP in MIN6 cells by antisense oligonucleotide (ASO) suppressed the accumulation of triglycerides upon fatty acid loading (56% of control) along with a reduction in the mRNA levels of lipogenic genes such as diacylglycerol O-acyltransferase-2 and fatty acid synthase. Fatty acid uptake, oxidation, and lipolysis were also reduced by downregulation of ADFP. Moreover, the reduction of ADFP impaired the ability of palmitate to increase insulin secretion. These findings demonstrate that ADFP is important in regulation of lipid metabolism and insulin secretion in β-cells.

  V. K Khor , R Dhir , X Yin , R. S Ahima and W. C. Song
 

Estrogen regulates fat mass and distribution and glucose metabolism. We have previously found that estrogen sulfotransferase (EST), which inactivates estrogen through sulfoconjugation, was highly expressed in adipose tissue of male mice and induced by testosterone in female mice. To determine whether inhibition of estrogen in female adipose tissue affects adipose mass and metabolism, we generated transgenic mice expressing EST via the aP2 promoter. As expected, EST expression was increased in adipose tissue as well as macrophages. Parametrial and subcutaneous inguinal adipose mass and adipocyte size were significantly reduced in EST transgenic mice, but there was no change in retroperitoneal or brown adipose tissue. EST overexpression decreased the differentiation of primary adipocytes, and this was associated with reductions in the expression of peroxisome proliferator-activated receptor-, fatty acid synthase, hormone-sensitive lipase, lipoprotein lipase, and leptin. Serum leptin levels were significantly lower in EST transgenic mice, whereas total and high-molecular-weight adiponectin levels were not different in transgenic and wild-type mice. Glucose uptake was blunted in parametrial adipose tissue during hyperinsulinemic-euglycemic clamp in EST transgenic mice. In contrast, hepatic insulin sensitivity was improved but muscle insulin sensitivity did not change in EST transgenic mice. These results reveal novel effects of EST on adipose tissue and glucose homeostasis in female mice.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility