Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by R. K Yu
Total Records ( 13 ) for R. K Yu
  K Kaida , T Ariga and R. K Yu
 

Guillain–Barré syndrome (GBS) is an acute immune-mediated polyradiculoneuropathy which can cause acute quadriplegia. Infection with micro-organisms, including Campylobacter jejuni (C. jejuni), Haemophilus influenzae, and Cytomegalovirus (CMV), is recognized as a main triggering event for the disease. Lipooligosaccharide (LOS) genes are responsible for the formation of human ganglioside-like LOS structures in infectious micro-organisms that can induce GBS. Molecular mimicry of LOSs on the surface of infectious agents and of ganglioside antigens on neural cells is thought to induce cross-reactive humoral and cellular immune responses. Patients with GBS develop antibodies against those gangliosides, resulting in autoimmune targeting of peripheral nerve sites, leading to neural damage. Heterogeneity of ganglioside expression in the peripheral nervous system (PNS) may underlie the differential clinical manifestation of the GBS variants. Recent studies demonstrate that some GBS sera react with ganglioside complexes consisting of two different gangliosides, such as GD1a and GD1b, or GM1 and GD1a, but not with each constituent ganglioside alone. The discovery of antiganglioside complex antibodies not only improves the detection rate of autoantibodies in GBS, but also provides a new concept in the antibody–antigen interaction through clustered carbohydrate epitopes. Although ganglioside mimicry is one of the possible etiological causes of GBS, unidentified factors may also contribute to the pathogenesis of GBS. While GBS is not considered a genetic disease, host factors, particularly human lymphocyte antigen type, appear to have a role in the pathogenesis of GBS following C. jejuni infection.

  Y Nakatani , M Yanagisawa , Y Suzuki and R. K Yu
 

Neural stem cells (NSCs) are undifferentiated neural cells characterized by their high proliferative potential and the capacity for self-renewal with retention of multipotency. Over the past two decades, there has been a huge effort to identify NSCs morphologically, genetically, and molecular biologically. It is still controversial, however, what bona fide NSCs are. To define and characterize NSCs more systematically, it is crucial to explore novel cell-surface marker molecules of NSCs. In this study, we focused on GD3, a b-series ganglioside that is enriched in the immature brain and the subventricular zone (SVZ) of the postnatal and adult brain, and evaluated the usefulness of GD3 as a cell-surface biomarker for identifying NSCs. We demonstrated that GD3 was expressed in more than 80% of NSCs prepared from embryonic, postnatal, and adult mouse brain tissue by the neurosphere culture method. The percentage of GD3-expressing NSCs in neurospheres was nearly the same as it was in neurospheres derived from embryonic, postnatal, and adult brains but decreased drastically to about 40% after differentiation. GD3+ cells isolated from embryonic mouse striata, postnatal, and adult mouse SVZs by fluorescence-activated cell sorting with an R24 anti-GD3 monoclonal antibody efficiently generated neurospheres compared with GD3 cells. These cells possessed multipotency to differentiate into neurons, astrocytes, and oligodendrocytes. These data indicate that GD3 is a unique and powerful cell-surface biomarker to identify and isolate NSCs.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility