Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by R McPherson
Total Records ( 2 ) for R McPherson
  R. W Davies , S Dandona , A. F. R Stewart , L Chen , S. G Ellis , W. H Wilson Tang , S. L Hazen , R Roberts , R McPherson and G. A. Wells
  Background—

Genome-wide association studies (GWAS) have identified single-nucleotide polymorphisms (SNPs) at multiple loci that are significantly associated with coronary artery disease (CAD) risk. In this study, we sought to determine and compare the predictive capabilities of 9p21.3 alone and a panel of SNPs identified and replicated through GWAS for CAD.

Methods and Results—

We used the Ottawa Heart Genomics Study (OHGS) (3323 cases, 2319 control subjects) and the Wellcome Trust Case Control Consortium (WTCCC) (1926 cases, 2938 control subjects) data sets. We compared the ability of allele counting, logistic regression, and support vector machines. Two sets of SNPs, 9p21.3 alone and a set of 12 SNPs identified by GWAS and through a model-fitting procedure, were considered. Performance was assessed by measuring area under the curve (AUC) for OHGS using 10-fold cross-validation and WTCCC as a replication set. AUC for logistic regression using OHGS increased significantly from 0.555 to 0.608 (P=3.59x10–14) for 9p21.3 versus the 12 SNPs, respectively. This difference remained when traditional risk factors were considered in a subgroup of OHGS (1388 cases, 2038 control subjects), with AUC increasing from 0.804 to 0.809 (P=0.037). The added predictive value over and above the traditional risk factors was not significant for 9p21.3 (AUC 0.801 versus 0.804, P=0.097) but was for the 12 SNPs (AUC 0.801 versus 0.809, P=0.0073). Performance was similar between OHGS and WTCCC. Logistic regression outperformed both support vector machines and allele counting.

Conclusions—

Using the collective of 12 SNPs confers significantly greater predictive capabilities for CAD than 9p21.3, whether traditional risks are or are not considered. More accurate models probably will evolve as additional CAD-associated SNPs are identified.

  M Preuss , I. R Konig , J. R Thompson , J Erdmann , D Absher , T. L Assimes , S Blankenberg , E Boerwinkle , L Chen , L. A Cupples , A. S Hall , E Halperin , C Hengstenberg , H Holm , R Laaksonen , M Li , W Marz , R McPherson , K Musunuru , C. P Nelson , M Susan Burnett , S. E Epstein , C. J O'Donnell , T Quertermous , D. J Rader , R Roberts , A Schillert , K Stefansson , A. F. R Stewart , G Thorleifsson , B. F Voight , G. A Wells , A Ziegler , S Kathiresan , M. P Reilly , N. J Samani , H Schunkert and on behalf of the CARDIoGRAM Consortium
  Background—

Recent genome-wide association studies (GWAS) of myocardial infarction (MI) and other forms of coronary artery disease (CAD) have led to the discovery of at least 13 genetic loci. In addition to the effect size, power to detect associations is largely driven by sample size. Therefore, to maximize the chance of finding novel susceptibility loci for CAD and MI, the Coronary ARtery DIsease Genome-wide Replication And Meta-analysis (CARDIoGRAM) consortium was formed.

Methods and Results—

CARDIoGRAM combines data from all published and several unpublished GWAS in individuals with European ancestry; includes >22 000 cases with CAD, MI, or both and >60 000 controls; and unifies samples from the Atherosclerotic Disease VAscular functioN and genetiC Epidemiology study, CADomics, Cohorts for Heart and Aging Research in Genomic Epidemiology, deCODE, the German Myocardial Infarction Family Studies I, II, and III, Ludwigshafen Risk and Cardiovascular Heath Study/AtheroRemo, MedStar, Myocardial Infarction Genetics Consortium, Ottawa Heart Genomics Study, PennCath, and the Wellcome Trust Case Control Consortium. Genotyping was carried out on Affymetrix or Illumina platforms followed by imputation of genotypes in most studies. On average, 2.2 million single nucleotide polymorphisms were generated per study. The results from each study are combined using meta-analysis. As proof of principle, we meta-analyzed risk variants at 9p21 and found that rs1333049 confers a 29% increase in risk for MI per copy (P=2x10–20).

Conclusion—

CARDIoGRAM is poised to contribute to our understanding of the role of common genetic variation on risk for CAD and MI.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility