Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by R Hui
Total Records ( 3 ) for R Hui
  H Ding , B Wu , H Wang , Z Lu , J Yan , X Wang , J. R Shaffer , R Hui and D. W. Wang
 

Rationale: Asymmetrical dimethylarginine (ADMA), an endogenous arginine analogue, inhibits nitric oxide synthases and plays an important role in endothelial dysfunction.

Objective: In the present study, we tested whether a novel genetic variant in dimethylarginine dimethylaminohydrolase 1 (DDAH1), an important ADMA hydrolyzing gene, was associated with stroke and coronary heart disease (CHD) susceptibility in the Chinese Han population.

Methods and Results: By resequencing, we identified a novel 4-nucleotide deletion/insertion variant in the DDAH1 promoter. The insertion allele disrupted binding of metal-regulatory transcription factor 1, which resulted in significant reduction of in vitro DDAH1 transcriptional activity and in vivo DDAH1 mRNA level, and in turn, increased plasma ADMA level and the ratio of ADMA to l-arginine. We initially genotyped the polymorphism in 1388 stroke patients and 1027 controls as well as 576 CHD patients and 557 controls and then replicated our study in additional independent case-control cohorts comprising 961 stroke patients and 822 controls and 482 CHD patients and 1072 controls. We identified that the –396 4N ins allele was significantly associated with increased risk of thrombosis stroke and CHD after adjusting for environmental factors in both samples for both diseases (thrombosis stroke discovery set: odds ratio [OR]=1.35, P=0.032; replication set: OR=1.51, P=0.006; CHD discovery set: OR=1.45, P=0.035; replication set: OR=1.47, P=0.003).

Conclusions: Our results suggest that the DDAH1 loss-of-function polymorphism is associated with both increased risk of thrombosis stroke and CHD.

  H Ding , Y Xu , X Wang , Q Wang , L Zhang , Y Tu , J Yan , W Wang , R Hui , C. Y Wang and D. W. Wang
 

Background— Recent studies on genome-wide association have identified common variants on chromosome 9p21 associated with coronary artery disease (CAD). Given that ischemic stroke and CAD share several aspects of etiology and pathogenesis, we investigated the association of variants on chromosome 9p21 with ischemic stroke and CAD in the Chinese Han population by capturing the majority of diversity in this locus using haplotype-tagging single-nucleotide polymorphisms.

Methods and Results— We performed a shared control-cases study using 15 tagging single-nucleotide polymorphisms and 2 previously reported susceptibility single-nucleotide polymorphisms spanning 58 kb of the chromosome of 9p21 in a set of 558 patients with ischemic stroke, 510 patients with CAD, and 557 unaffected participants (controls) in the Chinese Han population. The association analyses were performed at both SNP and haplotype levels. We further verified our findings in an independent cohort of 442 ischemic stroke cases and 502 control subjects. In the first study, rs2383206, rs1004638, and rs10757278 in block 3 were significantly associated with CAD but not with ischemic stroke independent of traditional cardiovascular risk factors in additive model (P=0.002 to 0.0001, q=0.026 to 0.004). Analysis from all blocks revealed that haplotype profiles of block 3 on 9p21 were significantly different between shared control and cases of CAD (P=1.3x10–10, q=1.2x10–9) and ischemic stroke (P=1.7x10–6, q=7.7x10–6). In the expanded second case-control study, block 3 on 9p21 remained associated with ischemic stroke (P=2.6x10–4, q=6.3x10–4).

Conclusions— Our results suggest for the first time that 9p21 is a shared susceptibility locus, strongly for CAD and weakly for ischemic stroke, in a Chinese Han population.

  K Marino , M. L. S Guther , A. K Wernimont , M Amani , R Hui and M. A. Ferguson
 

The protozoan parasite Trypanosoma brucei is the causative agent of the cattle disease Nagana and human African sleeping sickness. Glycoproteins play key roles in the parasite’s survival and infectivity, and the de novo biosyntheses of the sugar nucleotides UDP-galactose (UDP-Gal), UDP-N-acetylglucosamine, and GDP-fucose have been shown to be essential for their growth. The only route to UDP-Gal in T. brucei is through the epimerization of UDP-glucose (UDP-Glc) by UDP-Glc 4'-epimerase. UDP-Glc is also the glucosyl donor for the unfolded glycoprotein glucosyltransferase (UGGT) involved in glycoprotein quality control in the endoplasmic reticulum and is the presumed donor for the synthesis of base J (β-d-glucosylhydroxymethyluracil), a rare deoxynucleotide found in telomere-proximal DNA in the bloodstream form of T. brucei. Considering that UDP-Glc plays such a central role in carbohydrate metabolism, we decided to characterize UDP-Glc biosynthesis in T. brucei. We identified and characterized the parasite UDP-glucose pyrophosphorylase (TbUGP), responsible for the formation of UDP-Glc from glucose-1-phosphate and UTP, and localized the enzyme to the peroxisome-like glycosome organelles of the parasite. Recombinant TbUGP was shown to be enzymatically active and specific for glucose-1-phosphate. The high-resolution crystal structure was also solved, providing a framework for the design of potential inhibitors against the parasite enzyme.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility