Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by R Bao
Total Records ( 4 ) for R Bao
  E. J Silberfein , R Bao , A Lopez , E. G Grubbs , J. E Lee , D. B Evans and N. D. Perrier

Objectives  To evaluate and categorize the locations of missed parathyroid glands found during reoperative parathyroidectomy and to determine any factors associated with these locations.

Design  Retrospective cohort study.

Setting  Tertiary referral center.

Patients  Fifty-four patients who underwent reoperative parathyroidectomy for persistent or recurrent hyperparathyroidism from January 1, 2005, through January 1, 2009.

Main Outcome Measures  Location of missed parathyroid glands and their association with continuous variables were analyzed using a Kruskal-Wallis test, and associations between gland location and categorical variables were evaluated using the Fisher exact test.

Results  Among 54 patients, 50 abnormal parathyroid glands were identified, resected, and classified as follows: 5 (10%) were type A (adherent to the posterior thyroid capsule); 11 (22%), type B (behind the thyroid in the tracheoesophageal groove); 7 (14%), type C (close to the clavicle in the prevertebral space); 3 (6%), type D (directly over the recurrent laryngeal nerve); 9 (18%), type E (easy to identify; near the inferior thyroid pole); 13 (26%), type F (fallen into the thymus); and 2 (4%), type G (gauche, within the thyroid gland). No demographic, biochemical, or pathological factors were significantly associated with gland location. Among the 43 patients followed up for 6 months, 40 (93%) had documented cures.

Conclusions  Missed glands after parathyroidectomy for hyperparathyroidism can be found in standard locations in most cases. A standardized nomenclature system based on the regional anatomy and the embryology of the parathyroid glands can guide a systematic exploration for parathyroid adenomas that are not easily identified and facilitate communication about gland locations.

  R Bao , C. J Lai , H Qu , D Wang , L Yin , B Zifcak , R Atoyan , J Wang , M Samson , J Forrester , S DellaRocca , G. X Xu , X Tao , H. X Zhai , X Cai and C. Qian

Purpose: We designed and synthesized CUDC-305, an HSP90 inhibitor of the novel imidazopyridine class. Here, we report its unique pharmacologic properties and antitumor activities in a variety of tumor types.

Experimental Design: The potency of the compound was analyzed by fluorescence polarization competition binding assay. Its antiproliferative activities were assessed in 40 human cancer cell lines. Its pharmacologic properties and antitumor activities were evaluated in a variety of tumor xenograft models.

Results: CUDC-305 shows high affinity for HSP90/β (IC50, ~100 nmol/L) and HSP90 complex derived from cancer cells (IC50, 48.8 nmol/L). It displays potent antiproliferative activity against a broad range of cancer cell lines (mean IC50, 220 nmol/L). CUDC-305 exhibits high oral bioavailability (96.0%) and selective retention in tumor (half-life, 20.4 hours) compared with normal tissues. Furthermore, CUDC-305 can cross blood-brain barrier and reach therapeutic levels in brain tissue. CUDC-305 exhibits dose-dependent antitumor activity in an s.c. xenograft model of U87MG glioblastoma and significantly prolongs animal survival in U87MG orthotopic model. CUDC-305 also displays potent antitumor activity in animal models of erlotinib-resistant non–small cell lung cancer and induces tumor regression in animal models of MDA-MB-468 breast cancer and MV4-11 acute myelogenous leukemia. Correlating with its efficacy in these various tumor models, CUDC-305 robustly inhibits multiple signaling pathways, including PI3K/AKT and RAF/MEK/ERK, and induces apoptosis. In combination studies, CUDC-305 enhances the antitumor activity of standard-of-care agents in breast and colorectal tumor models.

Conclusion: CUDC-305 is a promising drug candidate for the treatment of a variety of cancers, including brain malignancies.

  R Bao and M. Friedrich

Using genomic information from mosquito, red flour beetle, honeybee, mouse, and sea anemone, we have studied the molecular evolution of 91 Drosophila genes involved in eye primordium determination, retinal differentiation, and phototransduction. Our results show that the majority of these gene sequences predate the diversification of endopterygote insects. However, all three functional groups contain a conspicuous fraction of evolutionarily younger genes, which originated by tandem duplication in the lineage leading to Drosophila, whereas gene duplications are rare in other insect lineages. We conclude that the retention of duplicated genes spiked during the early diversification of the higher Diptera possibly due to an extended period of exceptional population size reduction. Genetic data suggest that gene duplication played an important role in the evolution of visual performance in the fast flying higher Diptera by spatial or intracellular subfunctionalization. Developmental gene duplications, by contrast, predominantly retained overlapping expression patterns and preserved partial to complete redundancy consistent with a role in boosting developmental robustness.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility