Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by Qian Chen
Total Records ( 5 ) for Qian Chen
  Hui Li , Qian Chen , Markus Kaller , Wolfgang Nellen , Ralph Graf and Arturo De Lozanne
  Aurora kinases are highly conserved proteins with important roles in mitosis. Metazoans contain two kinases, Aurora A and B, which contribute distinct functions at the spindle poles and the equatorial region respectively. It is not currently known whether the specialized functions of the two kinases arose after their duplication in animal cells or were already present in their ancestral kinase. We show that Dictyostelium discoideum contains a single Aurora kinase, DdAurora, that displays characteristics of both Aurora A and B. Like Aurora A, DdAurora has an extended N-terminal domain with an A-box sequence and localizes at the spindle poles during early mitosis. Like Aurora B, DdAurora binds to its partner DdINCENP and localizes on centromeres at metaphase, the central spindle during anaphase, and the cleavage furrow at the end of cytokinesis. DdAurora also has several unusual properties. DdAurora remains associated with centromeres in anaphase, and this association does not require an interaction with DdINCENP. DdAurora then localizes at the cleavage furrow, but only at the end of cytokinesis. This localization is dependent on DdINCENP and the motor proteins Kif12 and myosin II. Thus, DdAurora may represent the ancestral kinase that gave rise to the different Aurora kinases in animals and also those in other organisms.
  Xin Guo , Yang Xiang , Qian Chen and Wei Wei
  A Social network graph shows social interactions and relationships between individuals in a specific social environment, which is very helpful for analyzing social relationships, activities, structures, etc. The author quantized the strengths of social objects’ relationships in social environment using an improved vector space model. Gaussian mixture model was employed to set the threshold for identifying social relationships adaptively and divide social subgroups automatically. According to the threshold, social network graph would be constructed based on performance measures. It is concluded that hidden social relationships can be discovered effectively by using this approach which is very flexible and adaptive for dynamic information feedback mechanism.
  Jing Zheng , Wan-Hua Shen , Ting-Jia Lu , Yang Zhou , Qian Chen , Zi Wang , Ting Xiang , Yong-Chuan Zhu , Chi Zhang , Shumin Duan and Zhi-Qi Xiong
  Endocytosis of Trk (tropomyosin-related kinase) receptors is critical for neurotrophin signal transduction and biological functions. However, the mechanism governing endocytosis of TrkB (tropomyosin-related kinase B) and the specific contributions of TrkB endocytosis to downstream signaling are unknown. In this study, we report that blocking clathrin, dynamin, or AP2 in cultured neurons of the central nervous system inhibited brain-derived neurotrophic factor (BDNF)-induced activation of Akt but not ERK. Treating neurons with the clathrin inhibitor monodansylcadaverine or a peptide that blocks dynamin function specifically abrogated Akt pathway activation in response to BDNF but did not affect the response of other downstream effectors or the up-regulation of immediate early genes neuropeptide Y and activity-regulated cytoskeleton-associated protein. Similar effects were found in neurons expressing small interfering RNA to silence AP2 or a dominant negative form of dynamin that inhibits clathrin-mediated endocytosis. In PC12 cells, ERK but not Akt activation required TrkA endocytosis following stimulation with nerve growth factor, whereas the opposite was true when TrkA-expressing neurons were stimulated with nerve growth factor in the central nervous system. Thus, the specific effects of internalized Trk receptors probably depend on the presence of cell type-specific modulators of neurotrophin signaling and not on differences inherent to Trk receptors themselves. Endocytosis-dependent activation of Akt in neurons was found to be critical for BDNF-supported survival and dendrite outgrowth. Together, these results demonstrate the functional requirement of clathrin- and dynamin-dependent endocytosis in generating the full intracellular response of neurons to BDNF in the central nervous system.
  Jie-Min Jia , Qian Chen , Yang Zhou , Sheng Miao , Jing Zheng , Chi Zhang and Zhi-Qi Xiong
  The ability of synapses to undergo changes in structure and function in response to alterations of neuronal activity is an essential property of neural circuits. One way that this is achieved is through global changes in the molecular composition of the synapse; however, it is not clear how these changes are coupled to the dynamics of neuronal activity. Here we found that, in cultured rat cortical neurons, bidirectional changes of neuronal activity led to corresponding alterations in the expression of brain-derived neurotrophic factor (BDNF) and phosphorylation of its receptor tropomyosin-related kinase B (TrkB), as well as in the level of synaptic proteins. Exogenous BDNF reversed changes in synaptic proteins induced by chronic activity blockade, while inhibiting Trk kinase activity or depleting endogenous BDNF abolished the concentration changes induced by chronic activity elevation. Both tetrodotoxin and bicuculline had significant, but opposite, effects on synaptic protein ubiquitination in a time-dependent manner. Furthermore, exogenous BDNF was sufficient to increase ubiquitination of synaptic proteins, whereas scavenging endogenous BDNF or inhibiting Trk kinase activity prevented the ubiquitination of synaptic proteins induced by chronic elevation of neuronal activity. Inhibiting the proteasome or blocking protein polyubiquitination mimicked the effect of tetrodotoxin on the levels of synaptic proteins and canceled the effects of BDNF. Our study indicates that BDNF-TrkB signaling acts upstream of the ubiquitin proteasome system, linking neuronal activity to protein turnover at the synapse.
  Mickael Derangeon , Nicolas Bourmeyster , Isabelle Plaisance , Caroline Pinet-Charvet , Qian Chen , Fabien Duthe , Michel R. Popoff , Denis Sarrouilhe and Jean-Claude Herve
  Gap junctions are clusters of transmembrane channels allowing a passive diffusion of ions and small molecules between adjacent cells. Connexin43, the main channel-forming protein expressed in ventricular myocytes, can associate with zonula occludens-1, a scaffolding protein linked to the actin cytoskeleton and to signal transduction molecules. The possible influence of Rho GTPases, major regulators of cellular junctions and of the actin cytoskeleton, in the modulation of gap junctional intercellular communication (GJIC) was examined. The activation of RhoA by cytoxic necrotizing factor 1 markedly enhanced GJIC, whereas its specific inhibition by the Clostridium botulinum C3 exoenzyme significantly reduced it. RhoA activity affects GJIC without major cellular redistribution of junctional plaques or changes in the Cx43 phosphorylation pattern. As these GTPases frequently act via the cortical cytoskeleton, the importance of F-actin in the modulation of GJIC was investigated by means of agents interfering with actin polymerization. Cytoskeleton stabilization by phalloidin slowed down the kinetics of channel rundown in the absence of ATP, whereas its disruption by cytochalasin D rapidly and markedly reduced GJIC despite ATP presence. Cytoskeleton stabilization by phalloidin markedly reduced the consequences of RhoA activation or inactivation. This mechanism appears to be the first described capable to both up- or down-regulate GJIC through RhoA activation or, conversely, inhibition. The inhibition of Rho downstream kinase effectors had no effect on GJIC. The present results provide further insight into the gating and regulation of junctional channels and identify a new downstream target for the small G-protein RhoA.
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility