Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by Q Xu
Total Records ( 10 ) for Q Xu
  Q Xu and C. G Parks

Background: Telomere length may be a marker of biological aging. Multivitamin supplements represent a major source of micronutrients, which may affect telomere length by modulating oxidative stress and chronic inflammation.

Objective: The objective was to examine whether multivitamin use is associated with longer telomeres in women.

Design: We performed a cross-sectional analysis of data from 586 early participants (age 35–74 y) in the Sister Study. Multivitamin use and nutrient intakes were assessed with a 146-item food-frequency questionnaire, and relative telomere length of leukocyte DNA was measured by quantitative polymerase chain reaction.

Results: After age and other potential confounders were adjusted for, multivitamin use was associated with longer telomeres. Compared with nonusers, the relative telomere length of leukocyte DNA was on average 5.1% longer among daily multivitamin users (P for trend = 0.002). In the analysis of micronutrients, higher intakes of vitamins C and E from foods were each associated with longer telomeres, even after adjustment for multivitamin use. Furthermore, intakes of both nutrients were associated with telomere length among women who did not take multivitamins.

Conclusion: This study provides the first epidemiologic evidence that multivitamin use is associated with longer telomere length among women.

  J. O Jin , Q Xu , J. I Park , T Zvyagintseva , V. A Stonik and J. Y. Kwak

Dendritic cells (DCs) are the most potent antigen-presenting cells for naive T cells. In this study, scavenger receptor class A type I and type II (SR-A) were shown to be expressed by peripheral blood DCs (PBDCs) and monocyte-derived DCs (MDDCs). In addition, the binding of anti–SR-A antibody to these cells was lower in the presence of fucoidan, an SR-A agonist. Treatment of these DCs with fucoidan or anti–SR-A antibody markedly increased the surface expression of costimulatory molecules CD83 and major histocompatibility complex class II on the CD11chighCD123low myeloid subset of PBDCs. Furthermore, fucoidan-treated PBDCs produced tumor necrosis factor- (TNF-) but not IL-12p70. In addition, fucoidan-induced maturation was eliminated by pretreatment with TNF-–neutralizing antibody. Finally, interferon- secretion and T-cell proliferation were enhanced by coculture of T cells with fucoidan-matured PBDCs. Specific inhibitors of p38 MAPK and glycogen synthase kinase 3 suppressed TNF- production and maturation of fucoidan-treated PBDCs. Moreover, MDDCs lacking SR-A failed to up-regulate CD83 expression, TNF- production, and phosphorylation of p38 MAPK and glycogen synthase kinase 3-β in the presence of fucoidan. Taken together, these results suggest that ligation of SR-A leads to induction of TNF-, which subsequently induces PBDC maturation, thereby leading to enhanced T-cell stimulatory capacity.

  R. C Laxton , Y Hu , J Duchene , F Zhang , Z Zhang , K. Y Leung , Q Xiao , R. S Scotland , C. P Hodgkinson , K Smith , J Willeit , C Lopez Otin , I. A Simpson , S Kiechl , A Ahluwalia , Q Xu and S. Ye

Rationale: Atherosclerotic lesions express matrix metalloproteinase (MMP)8, which possesses proteolytic activity on matrix proteins particularly fibrillar collagens and on nonmatrix proteins such as angiotensin (Ang) I.

Objective: We studied whether MMP8 plays a role in atherogenesis.

Methods and Results: In atherosclerosis-prone apolipoprotein E–deficient mice, inactivating MMP8 resulted in a substantial reduction in atherosclerotic lesion formation. Immunohistochemical examinations showed that atherosclerotic lesions in MMP8-deficient mice had significantly fewer macrophages but increased collagen content. In line with results of in vitro assays showing that Ang I cleavage by MMP8 generated Ang II, MMP8 knockout mice had lower Ang II levels and lower blood pressure. In addition, we found that products of Ang I cleavage by MMP8 increased vascular cell adhesion molecule (VCAM)-1 expression and that MMP8-deficient mice had reduced VCAM-1 expression in atherosclerotic lesions. Intravital microscopy analysis showed that leukocyte rolling and adhesion on vascular endothelium was reduced in MMP8 knockout mice. Furthermore, we detected an association between MMP8 gene variation and extent of coronary atherosclerosis in patients with coronary artery disease. A relationship among MMP8 gene variation, plasma VCAM-1 level, and atherosclerosis progression was also observed in a population-based, prospective study.

Conclusions: These results indicate that MMP8 is an important player in atherosclerosis.

  L Wang , J Zheng , Y Du , Y Huang , J Li , B Liu , C. j Liu , Y Zhu , Y Gao , Q Xu , W Kong and X. Wang

Rational: Vascular smooth muscle cells (VSMCs) switching from a contractile/differentiated to a synthetic/dedifferentiated phenotype has an essential role in atherosclerosis, postangioplastic restenosis and hypertension. However, how normal VSMCs maintain the differentiated state is less understood.

Objective: We aimed to indentify the effect of cartilage oligomeric matrix protein (COMP), a normal vascular extracellular matrix, on modulation of VSMCs phenotype.

Methods and Results: We demonstrated that COMP was associated positively with the expression of VSMC differentiation marker genes during phenotype transition. Knockdown of COMP by small interfering (si)RNA favored dedifferentiation. Conversely, adenoviral overexpression of COMP markedly suppressed platelet-derived growth factor-BB-elicited VSMC dedifferentiation, characterized by altered VSMC morphology, actin fiber organization, focal adhesion assembly, and the expression of phenotype-dependent markers. Whereas 7 integrin coimmunoprecipitated with COMP in normal rat VSMCs and vessels, neutralizing antibody or siRNA against 7 integrin inhibited VSMC adhesion to COMP, which indicated that 7β1 integrin is a potential receptor for COMP. As well, blocking or interference by siRNA of 7 integrin completely abolished the effect of COMP on conserving the contractile phenotype. In accordance, ectopic adenoviral overexpression of COMP greatly retarded VSMC phenotype switching, rescued contractility of carotid artery ring, and inhibited neointima formation in balloon-injured rats.

Conclusions: Our data suggest that COMP is essential for maintaining a VSMC contractile phenotype and the protective effects of COMP are mainly mediated through interaction with 7β1 integrin. Investigations to identify the factors affecting the expression and integrity of COMP may provide a novel therapeutic target for vascular disorders.

  A Margariti , A Zampetaki , Q Xiao , B Zhou , E Karamariti , D Martin , X Yin , M Mayr , H Li , Z Zhang , E De Falco , Y Hu , G Cockerill , Q Xu and L. Zeng

Rationale: Histone deacetylase (HDAC)7 is expressed in the early stages of embryonic development and may play a role in endothelial function.

Objective: This study aimed to investigate the role of HDAC7 in endothelial cell (EC) proliferation and growth and the underlying mechanism.

Methods and Results: Overexpression of HDAC7 by adenoviral gene transfer suppressed human umbilical vein endothelial cell (HUVEC) proliferation by preventing nuclear translocation of β-catenin and downregulation of T-cell factor-1/Id2 (inhibitor of DNA binding 2) and cyclin D1, leading to G1 phase elongation. Further assays with the TOPFLASH reporter and quantitative RT-PCR for other β-catenin target genes such as Axin2 confirmed that overexpression of HDAC7 decreased β-catenin activity. Knockdown of HDAC7 by lentiviral short hairpin RNA transfer induced β-catenin nuclear translocation but downregulated cyclin D1, cyclin E1 and E2F2, causing HUVEC hypertrophy. Immunoprecipitation assay and mass spectrometry analysis revealed that HDAC7 directly binds to β-catenin and forms a complex with 14-3-3 , , and proteins. Vascular endothelial growth factor treatment induced HDAC7 degradation via PLC-IP3K (phospholipase C–inositol-1,4,5-trisphosphate kinase) signal pathway and partially rescued HDAC7-mediated suppression of proliferation. Moreover, vascular endothelial growth factor stimulation suppressed the binding of HDAC7 with β-catenin, disrupting the complex and releasing β-catenin to translocate into the nucleus.

Conclusions: These findings demonstrate that HDAC7 interacts with β-catenin keeping ECs in a low proliferation stage and provides a novel insight into the mechanism of HDAC7-mediated signal pathways leading to endothelial growth.

  F Fleissner , V Jazbutyte , J Fiedler , S. K Gupta , X Yin , Q Xu , P Galuppo , S Kneitz , M Mayr , G Ertl , J Bauersachs and T. Thum

Rationale: The endogenous nitric oxide synthase inhibitor asymmetrical dimethylarginine (ADMA) is increased in patients with coronary artery disease and may regulate function of circulating angiogenic progenitor cells (APCs) by small regulatory RNAs.

Objectives: To study the role of microRNAs in ADMA-mediated impairment of APCs.

Methods and Results: By using microarray analyses, we established microRNA expression profiles of human APCs. We used ADMA to induce APC dysfunction and found 16 deregulated microRNAs. We focused on miR-21, which was 3-fold upregulated by ADMA treatment. Overexpression of miR-21 in human APCs impaired migratory capacity. To identify regulated miR-21 targets, we used proteome analysis, using difference in-gel electrophoresis followed by mass spectrometric analysis of regulated proteins. We found that transfection of miR-21 precursors significantly repressed superoxide dismutase 2 in APCs, which resulted in increased intracellular reactive oxygen species concentration and impaired nitric oxide bioavailability. MiR-21 further repressed sprouty-2, leading to Erk Map kinase–dependent reactive oxygen species formation and APC migratory defects. Small interference RNA–mediated superoxide dismutase 2 or sprouty-2 reduction also increased reactive oxygen species formation and impaired APC migratory capacity. ADMA-mediated reactive oxygen species formation and APC dysfunction was rescued by miR-21 blockade. APCs from patients with coronary artery disease and high ADMA plasma levels displayed >4-fold elevated miR-21 levels, low superoxide dismutase 2 expression, and impaired migratory capacity, which could be normalized by miR-21 antagonism.

Conclusions: We identified a novel miR-21–dependent mechanism of ADMA-mediated APC dysfunction. MiR-21 antagonism therefore emerges as an interesting strategy to improve dysfunctional APCs in patients with coronary artery disease.

  M Mayr , D Grainger , U Mayr , A. S Leroyer , G Leseche , A Sidibe , O Herbin , X Yin , A Gomes , B Madhu , J. R Griffiths , Q Xu , A Tedgui and C. M. Boulanger

Background— Microparticles (MPs) with procoagulant activity are present in human atherosclerosis, but no detailed information is available on their composition.

Methods and Results— To obtain insights into the role of MPs in atherogenesis, MP proteins were identified by tandem mass spectrometry, metabolite profiles were determined by high-resolution nuclear magnetic resonance spectroscopy, and antibody reactivity was assessed against combinatorial antigen libraries. Plaque MPs expressed surface antigens consistent with their leukocyte origin, including major histocompatibility complex classes I and II, and induced a dose-dependent stimulatory effect on T-cell proliferation. Notably, taurine, the most abundant free organic acid in human neutrophils, which scavenges myeloperoxidase-catalyzed free radicals, was highly enriched in plaque MPs. Moreover, fluorescent labeling of proteins on the MP surface suggested immunoglobulins to be trapped inside, which was confirmed by flow cytometry analysis on permeabilized and nonpermeabilized plaque MPs. Colabeling for CD14 and IgG established that more than 90% of the IgG containing MPs were CD14+, indicating a macrophage origin. Screening against an antigen library revealed that the immunologic profiles of antibodies in MPs were similar to those found in plaques but differed profoundly from antibodies in plasma and unexpectedly, showed strong reactions with oligosaccharide antigens, in particular blood group antigen A.

Conclusions— This study provides the first evidence that immunoglobulins are present within MPs derived from plaque macrophages, that the portfolio of plaque antibodies is different from circulating antibodies in plasma, and that anticarbohydrate antibodies are retained in human atherosclerotic lesions.

  D. F Sobieszczuk , A Poliakov , Q Xu and D. G. Wilkinson

Neuronal differentiation is regulated by proneural genes that promote neurogenesis and inhibitory mechanisms that maintain progenitors. This raises the question of how the up-regulation of proneural genes required to initiate neurogenesis occurs in the presence of such inhibition. We carried out loss and gain of gene function, an interaction screen for binding partners, and biochemical analyses to uncover the regulation, developmental role, and mechanism of action of a ubiquitination adaptor protein, Btbd6a (BTB domain containing 6a). We find that the proneural gene neurog1 up-regulates btbd6a, which in turn is required for up-regulation of neurog1. Btbd6a is an adaptor for the Cul3 ubiquitin ligase complex, and we find that it binds to the transcriptional repressor Plzf (promyelocytic leukemia zinc finger). Btbd6a promotes the relocation of Plzf from nucleus to cytoplasm and targets Plzf for ubiquitination and degradation. plzfa is expressed widely in the neural epithelium; when overexpressed, it inhibits neurogenesis, and this inhibition is reversed by btbd6a. The antagonism of endogenous plzfa by btbd6a is required for neurogenesis, since the block in neuronal differentiation caused by btbd6a knockdown is alleviated by plzfa knockdown. These findings reveal a feedback loop mediated by degradation of an inhibitor that is essential for progenitors to undergo the transition to neuronal differentiation.

  L Liu , J Hou , J Du , R. S Chumanov , Q Xu , Y Ge , J. A Johnson and R. M. Murphy

Tg2576 mice produce high levels of beta-amyloid (Aβ) and develop amyloid deposits, but lack neurofibrillary tangles and do not suffer the extensive neuronal cell loss characteristic of Alzheimer's disease. Protection from Aβ toxicity has been attributed to up-regulation of transthyretin (TTR), a normal component of plasma and cerebrospinal fluid. We compared the effect of TTR purified from human plasma (pTTR) with that produced recombinantly (rTTR) on Aβ aggregation and toxicity. pTTR slowed Aβ aggregation but failed to protect primary cortical neurons from Aβ toxicity. In contrast, rTTR accelerated aggregation, while effectively protecting neurons. This inverse correlation between Aβ aggregation kinetics and toxicity is consistent with the hypothesis that soluble intermediates rather than insoluble fibrils are the most toxic Aβ species. We carried out a detailed comparison of pTTR with rTTR to ascertain the probable cause of these different effects. No differences in secondary, tertiary or quaternary structure were detected. However, pTTR differed from rTTR in the extent and nature of modification at Cys10. We hypothesize that differential modification at Cys10 regulates TTR's effect on Aβ aggregation and toxicity.

  C Jiang , H Zhang , W Zhang , W Kong , Y Zhu , Q Xu , Y Li and X. Wang

Adipokines may represent a mechanism linking insulin resistance to cardiovascular disease. We showed previously that homocysteine (Hcy), an independent risk factor for cardiovascular disease, can induce the expression and secretion of resistin, a novel adipokine, in vivo and in vitro. Since vascular smooth muscle cell (VSMC) migration is a key event in vascular disease, we hypothesized that adipocyte-derived resistin is involved in Hcy-induced VSMC migration. To confirm our hypothesis, Sprague-Dawley rat aortic SMCs were cocultured with Hcy-stimulated primary rat epididymal adipocytes or treated directly with increasing concentrations of resistin for up to 24 h. Migration of VSMCs was investigated. Cytoskeletal structure and cytoskeleton-related proteins were also detected. The results showed that Hcy (300–500 µM) increased migration significantly in VSMCs cocultured with adipocytes but not in VSMC cultured alone. Resistin alone also significantly increased VSMC migration in a time- and concentration-dependent manner. Resistin small interfering RNA (siRNA) significantly attenuated VSMC migration in the coculture system, which indicated that adipocyte-derived resistin mediates Hcy-induced VSMC migration. On cell spreading assay, resistin induced the formation of focal adhesions near the plasma membrane, which suggests cytoskeletal rearrangement via an 5β1-integrin-focal adhesion kinase/paxillin-Ras-related C3 botulinum toxin substrate 1 (Rac1) pathway. Our data demonstrate that Hcy promotes VSMC migration through a paracrine or endocrine effect of adipocyte-derived resistin, which provides further evidence of the adipose-vascular interaction in metabolic disorders. The migratory action exerted by resistin on VSMCs may account in part for the increased incidence of restenosis in diabetic patients.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility