Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by Q Qian
Total Records ( 3 ) for Q Qian
  M. H Rosner , J. S Berns , M Parker , A Tolwani , J Bailey , S DiGiovanni , E Lederer , S Norby , T. J Plumb , Q Qian , J Yeun , J. L Hawley , S Owens and The ASN In Training Examination Committee
 

The American Society of Nephrology and the fellowship training program directors in conjunction with the National Board of Medical Examiners developed a comprehensive assessment of medical knowledge for nephrology fellows in-training. This in-training examination (ITE) consisted of 150 multiple-choice items covering 11 broad content areas in a blueprint similar to the American Board of Internal Medicine certifying examination for nephrology. Questions consisted of case vignettes to simulate real-life clinical experience. The first examination was given in April 2009 to 682 fellows and six training program directors. Examinees felt that the examination was well structured and relevant to their training experience Longitudinal performance on the examination will be helpful in allowing training programs to utilize results from content areas in identifying deficits in medical knowledge as well as assessing the results of any curriculum changes.

  V. E Torres , A Boletta , A Chapman , V Gattone , Y Pei , Q Qian , D. P Wallace , T Weimbs and R. P. Wuthrich
 

Mammalian target of rapamycin (mTOR) is the core component of two complexes, mTORC1 and mTORC2. mTORC1 is inhibited by rapamycin and analogues. mTORC2 is impeded only in some cell types by prolonged exposure to these compounds. mTOR activation is linked to tubular cell proliferation in animal models and human autosomal dominant polycystic kidney disease (ADPKD). mTOR inhibitors impede cell proliferation and cyst growth in polycystic kidney disease (PKD) models. After renal transplantation, two small retrospective studies suggested that mTOR was more effective than calcineurin inhibitor-based immunosuppression in limiting kidney and/or liver enlargement. By inhibiting vascular remodeling, angiogenesis, and fibrogenesis, mTOR inhibitors may attenuate nephroangiosclerosis, cyst growth, and interstitial fibrosis. Thus, they may benefit ADPKD at multiple levels. However, mTOR inhibition is not without risks and side effects, mostly dose-dependent. Under certain conditions, mTOR inhibition interferes with adaptive increases in renal proliferation necessary for recovery from injury. They restrict Akt activation, nitric oxide synthesis, and endothelial cell survival (downstream from mTORC2) and potentially increase the risk for glomerular and peritubular capillary loss, vasospasm, and hypertension. They impair podocyte integrity pathways and may predispose to glomerular injury. Administration of mTOR inhibitors is discontinued because of side effects in up to 40% of transplant recipients. Currently, treatment with mTOR inhibitors should not be recommended to treat ADPKD. Results of ongoing studies must be awaited and patients informed accordingly. If effective, lower dosages than those used to prevent rejection would minimize side effects. Combination therapy with other effective drugs could improve tolerability and results.

  X Huang , Q Feng , Q Qian , Q Zhao , L Wang , A Wang , J Guan , D Fan , Q Weng , T Huang , G Dong , T Sang and B. Han
 

The next-generation sequencing technology coupled with the growing number of genome sequences opens the opportunity to redesign genotyping strategies for more effective genetic mapping and genome analysis. We have developed a high-throughput method for genotyping recombinant populations utilizing whole-genome resequencing data generated by the Illumina Genome Analyzer. A sliding window approach is designed to collectively examine genome-wide single nucleotide polymorphisms for genotype calling and recombination breakpoint determination. Using this method, we constructed a genetic map for 150 rice recombinant inbred lines with an expected genotype calling accuracy of 99.94% and a resolution of recombination breakpoints within an average of 40 kb. In comparison to the genetic map constructed with 287 PCR-based markers for the rice population, the sequencing-based method was ~20x faster in data collection and 35x more precise in recombination breakpoint determination. Using the sequencing-based genetic map, we located a quantitative trait locus of large effect on plant height in a 100-kb region containing the rice "green revolution" gene. Through computer simulation, we demonstrate that the method is robust for different types of mapping populations derived from organisms with variable quality of genome sequences and is feasible for organisms with large genome sizes and low polymorphisms. With continuous advances in sequencing technologies, this genome-based method may replace the conventional marker-based genotyping approach to provide a powerful tool for large-scale gene discovery and for addressing a wide range of biological questions.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility