Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by Q Luo
Total Records ( 2 ) for Q Luo
  L Wang , Y. X Mai , Y. C Zhang , Q Luo and H. Q. Yang
 

MicroRNAs (miRNAs) are ~21-nucleotide noncoding RNAs that play critical roles in regulating plant growth and development through directing the degradation of target mRNAs. Axillary meristem activity, and hence shoot branching, is influenced by a complicated network that involves phytohormones such as auxin, cytokinin, and strigolactone. GAI, RGA, and SCR (GRAS) family members take part in a variety of developmental processes, including axillary bud growth. Here, we show that the Arabidopsis thaliana microRNA171c (miR171c) acts to negatively regulate shoot branching through targeting GRAS gene family members SCARECROW-LIKE6-II (SCL6-II), SCL6-III, and SCL6-IV for cleavage. Transgenic plants overexpressing MIR171c (35Spro–MIR171c) and scl6-II scl6-III scl6-IV triple mutant plants exhibit a similar reduced shoot branching phenotype. Expression of any one of the miR171c-resistant versions of SCL6-II, SCL6-III, and SCL6-IV in 35Spro–MIR171c plants rescues the reduced shoot branching phenotype. Scl6-II scl6-III scl6-IV mutant plants exhibit pleiotropic phenotypes such as increased chlorophyll accumulation, decreased primary root elongation, and abnormal leaf and flower patterning. SCL6-II, SCL6-III, and SCL6-IV are located to the nucleus, and show transcriptional activation activity. Our results suggest that miR171c-targeted SCL6-II, SCL6-III, and SCL6-IV play an important role in the regulation of shoot branch production.

  X Liu , Q Luo , G Zhong , M Rizwan ul Haq and M. Hu
 

Some chemosensory proteins (CSPs) expressed in insect sensory appendages are thought to be involved in chemical signaling in moths. We cloned and characterized four CSP genes from Plutella xylostella. The deduced amino acid sequences of PxylCSP1, PxylCSP2, PxylCSP3 and PxylCSP4 revealed open reading frames of 152, 128, 126 and 126 amino acids, respectively, with four conserved cysteine residues. The expression patterns of the four PxylCSP genes were further investigated by reverse transcription (RT) PCR and real-time PCR. PxylCSP1 and PxylCSP2 genes were expressed in all the tested tissues with the highest expression level in the antennae and heads (without antennae) whereas PxylCSP3 and PxylCSP4 mRNA were distributed extensively in all the tested tissues without apparent quantitative differences. The transcription levels of these CSP genes depended on sex, age, mating and the genes. Fluorescence quenching with Rhodojaponin-III (R-III) and homology modelling studies indicated that PxylCSP1 was able to bind non-volatile oviposition deterrents, such as R-III. These ubiquitous proteins might have the role of extracting non-volatile compounds (oviposition deterrents or antifeedants) dispersed in the environment and transporting them to their receptor.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility