Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by Q Chen
Total Records ( 6 ) for Q Chen
  M. S Kim , K. Y Wu , V Auyeung , Q Chen , P. A Gruppuso and C. Phornphutkul
 

Linear growth in children is sensitive to nutritional status. Amino acids, in particular leucine, have been shown to regulate cell growth, proliferation, and differentiation through the mammalian target of rapamycin (mTOR), a nutrient-sensing protein kinase. Having recently demonstrated a role for mTOR in chondrogenesis, we hypothesized that leucine restriction, acting through mTOR, would inhibit growth plate chondrocyte proliferation and differentiation. The effect of leucine restriction was compared with that of the specific mTOR inhibitor, rapamycin. Leucine restriction produced a dose-dependent inhibition of fetal rat metatarsal explant growth. This was accounted by reduced cell proliferation and hypertrophy but not apoptosis. mTOR activity, as reflected by ribosomal protein S6 phosphorylation, was only partially inhibited by leucine restriction, whereas rapamycin abolished S6 phosphorylation. In chondrogenic ATDC5 cells, leucine restriction inhibited cell number, proteoglycan accumulation, and collagen X expression despite minimal inhibition of mTOR. Microarray analysis demonstrated that the effect of leucine restriction on ATDC5 cell gene expression differed from that of rapamycin. Out of 1,571 genes affected by leucine restriction and 535 genes affected by rapamycin, only 176 genes were affected by both. These findings indicate that the decreased chondrocyte growth and differentiation associated with leucine restriction is only partly attributable to inhibition of mTOR signaling. Thus nutrient restriction appears to directly modulate bone growth through unidentified mTOR-independent mechanisms in addition to the well-characterized mTOR nutrient-sensing pathway.

  D Zeng , Q Chen and J. G. Ibrahim
 

We propose a class of transformation models for multivariate failure times. The class of transformation models generalize the usual gamma frailty model and yields a marginally linear transformation model for each failure time. Nonparametric maximum likelihood estimation is used for inference. The maximum likelihood estimators for the regression coefficients are shown to be consistent and asymptotically normal, and their asymptotic variances attain the semiparametric efficiency bound. Simulation studies show that the proposed estimation procedure provides asymptotically efficient estimates and yields good inferential properties for small sample sizes. The method is illustrated using data from a cardiovascular study.

  X Zhang , Q Chen , J Feng , J Hou , F Yang , J Liu , Q Jiang and C. Zhang
 

Nedd1 is a new member of the -tubulin ring complex (TuRC) and targets the TuRC to the centrosomes for microtubule nucleation and spindle assembly in mitosis. Although its role is known, its functional regulation mechanism remains unclear. Here we report that the function of Nedd1 is regulated by Cdk1 and Plk1. During mitosis, Nedd1 is firstly phosphorylated at T550 by Cdk1, which creates a binding site for the polo-box domain of Plk1. Then, Nedd1 is further phosphorylated by Plk1 at four sites: T382, S397, S637 and S426. The sequential phosphorylation of Nedd1 by Cdk1 and Plk1 promotes its interaction with -tubulin for targeting the TuRC to the centrosome and is important for spindle formation. Knockdown of Plk1 by RNAi decreases Nedd1 phosphorylation and attenuates Nedd1 accumulation at the spindle pole and subsequent -tubulin recruitment at the spindle pole for microtubule nucleation. Taken together, we propose that the sequential phosphorylation...

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility