Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by Pierluigi Gambetti
Total Records ( 2 ) for Pierluigi Gambetti
  Qingzhong Kong , Mengjie Zheng , Cristina Casalone , Liuting Qing , Shenghai Huang , Bikram Chakraborty , Ping Wang , Fusong Chen , Ignazio Cali , Cristiano Corona , Francesca Martucci , Barbara Iulini , Pierluigi Acutis , Lan Wang , Jingjing Liang , Meiling Wang , Xinyi Li , Salvatore Monaco , Gianluigi Zanusso , Wen -Quan Zou , Maria Caramelli and Pierluigi Gambetti
  Bovine spongiform encephalopathy (BSE), the prion disease in cattle, was widely believed to be caused by only one strain, BSE-C. BSE-C causes the fatal prion disease named new variant Creutzfeldt-Jacob disease in humans. Two atypical BSE strains, bovine amyloidotic spongiform encephalopathy (BASE, also named BSE-L) and BSE-H, have been discovered in several countries since 2004; their transmissibility and phenotypes in humans are unknown. We investigated the infectivity and human phenotype of BASE strains by inoculating transgenic (Tg) mice expressing the human prion protein with brain homogenates from two BASE strain-infected cattle. Sixty percent of the inoculated Tg mice became infected after 20 to 22 months of incubation, a transmission rate higher than those reported for BSE-C. A quarter of BASE strain-infected Tg mice, but none of the Tg mice infected with prions causing a sporadic human prion disease, showed the presence of pathogenic prion protein isoforms in the spleen, indicating that the BASE prion is intrinsically lymphotropic. The pathological prion protein isoforms in BASE strain-infected humanized Tg mouse brains are different from those from the original cattle BASE or sporadic human prion disease. Minimal brain spongiosis and long incubation times are observed for the BASE strain-infected Tg mice. These results suggest that in humans, the BASE strain is a more virulent BSE strain and likely lymphotropic.
  Silvio Notari , Rosaria Strammiello , Sabina Capellari , Armin Giese , Maura Cescatti , Jacques Grassi , Bernardino Ghetti , Jan P. M. Langeveld , Wen-Quan Zou , Pierluigi Gambetti , Hans A. Kretzschmar and Piero Parchi
  In prion disease, the abnormal conformer of the cellular prion protein, PrPSc, deposits in fibrillar protein aggregates in brain and other organs. Limited exposure of PrPSc to proteolytic digestion in vitro generates a core fragment of 19–21 kDa, named PrP27–30, which is also found in vivo. Recent evidence indicates that abnormal truncated fragments other than PrP27–30 may form in prion disease either in vivo or in vitro. We characterized a novel protease-resistant PrP fragment migrating 2–3 kDa faster than PrP27–30 in Creutzfeldt-Jakob disease (CJD) brains. The fragment has a size of about 18.5 kDa when associated with PrP27–30 type 1 (21 kDa) and of 17 kDa when associated with type 2 (19 kDa). Molecular mass and epitope mapping showed that the two fragments share the primary N-terminal sequence with PrP27–30 types 1 and 2, respectively, but lack a few amino acids at the very end of C terminus together with the glycosylphosphatidylinositol anchor. The amounts of the 18.5- or 17-kDa fragments and the previously described 13-kDa PrPSc C-terminal fragment relatively to the PrP27–30 signal significantly differed among CJD subtypes. Furthermore, protease digestion of PrPSc or PrP27–30 in partially denaturing conditions generated an additional truncated fragment of about 16 kDa only in typical sporadic CJD (i.e. MM1). These results show that the physicochemical heterogeneity of PrPSc in CJD extends to abnormal truncated forms of the protein. The findings support the notion of distinct structural "conformers" of PrPSc and indicate that the characterization of truncated PrPSc forms may further improve molecular typing in CJD.
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility