Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by Paul M. Thompson
Total Records ( 2 ) for Paul M. Thompson
  Clifford R. Jack Jr. , Matt A. Bernstein , Bret J. Borowski , Jeffrey L. Gunter , Nick C. Fox , Paul M. Thompson , Norbert Schuff , Gunnar Krueger , Ronald J. Killiany , Charles S. DeCarli , Anders M. Dale , Owen W. Carmichael , Duygu Tosun and Michael W. Weiner
  Functions of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) magnetic resonance imaging (MRI) core fall into three categories: (1) those of the central MRI core laboratory at Mayo Clinic, Rochester, Minnesota, needed to generate high quality MRI data in all subjects at each time point; (2) those of the funded ADNI MRI core imaging analysis groups responsible for analyzing the MRI data; and (3) the joint function of the entire MRI core in designing and problem solving MR image acquisition, pre-processing, and analyses methods. The primary objective of ADNI was and continues to be improving methods for clinical trials in Alzheimer's disease. Our approach to the present (“ADNI-GO”) and future (“ADNI-2,” if funded) MRI protocol will be to maintain MRI methodological consistency in the previously enrolled “ADNI-1” subjects who are followed up longitudinally in ADNI-GO and ADNI-2. We will modernize and expand the MRI protocol for all newly enrolled ADNI-GO and ADNI-2 subjects. All newly enrolled subjects will be scanned at 3T with a core set of three sequence types: 3D T1-weighted volume, FLAIR, and a long TE gradient echo volumetric acquisition for micro hemorrhage detection. In addition to this core ADNI-GO and ADNI-2 protocol, we will perform vendor-specific pilot sub-studies of arterial spin-labeling perfusion, resting state functional connectivity, and diffusion tensor imaging. One of these sequences will be added to the core protocol on systems from each MRI vendor. These experimental sub-studies are designed to demonstrate the feasibility of acquiring useful data in a multicenter (but single vendor) setting for these three emerging MRI applications.
  Andrew J. Saykin , Li Shen , Tatiana M. Foroud , Steven G. Potkin , Shanker Swaminathan , Sungeun Kim , Shannon L. Risacher , Kwangsik Nho , Matthew J. Huentelman , David W. Craig , Paul M. Thompson , Jason L. Stein , Jason H. Moore , Lindsay A. Farrer , Robert C. Green , Lars Bertram , Clifford R. Jack Jr. and Michael W. Weiner
  The role of the Alzheimer’s Disease Neuroimaging Initiative Genetics Core is to facilitate the investigation of genetic influences on disease onset and trajectory as reflected in structural, functional, and molecular imaging changes; fluid biomarkers; and cognitive status. Major goals include (1) blood sample processing, genotyping, and dissemination, (2) genome-wide association studies (GWAS) of longitudinal phenotypic data, and (3) providing a central resource, point of contact and planning group for genetics within the Alzheimer’s Disease Neuroimaging Initiative. Genome-wide array data have been publicly released and updated, and several neuroimaging GWAS have recently been reported examining baseline magnetic resonance imaging measures as quantitative phenotypes. Other preliminary investigations include copy number variation in mild cognitive impairment and Alzheimer’s disease and GWAS of baseline cerebrospinal fluid biomarkers and longitudinal changes on magnetic resonance imaging. Blood collection for RNA studies is a new direction. Genetic studies of longitudinal phenotypes hold promise for elucidating disease mechanisms and risk, development of therapeutic strategies, and refining selection criteria for clinical trials.
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility