Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by Patricia V. Turner
Total Records ( 2 ) for Patricia V. Turner
  Queenie C. K. Cheung , Patricia V. Turner , Cheng Song , De Wu , Hugh Y. Cai , Janet I. MacInnes and Julang Li
  Antibiotic-resistant bacteria have become a public health concern. It was suggested that one source of resistant pathogens may be food-producing animals. Alternative approaches are therefore needed to enhance the resistance of farm animals to bacterial infection. Protegrin-1 (PG-1) is a neutrophil-derived antimicrobial peptide that possesses activity against a wide range of bacteria and enveloped viruses. Here we report on the production of transgenic mice that ectopically expressed PG-1 and compare their susceptibilities to Actinobacillus suis infection with those of their wild-type (WT) littermates. Of the 126 mice that were challenged with A. suis, 87% of the transgenic mice survived, whereas 31% of their WT littermates survived. The PG-1 transgenic mice had significantly lower bacterial loads in their lungs and reduced numbers of pulmonary pathological lesions. The antimicrobial function of PG-1 was confirmed in vitro by using fibroblast cells isolated from the transgenic mice but not the WT mice. Moreover, differential blood cell counts in bronchoalveolar lavage fluid indicated greater number of neutrophils in PG-1 transgenic mice than in their WT littermates after bacterial challenge. Our data suggest that the ectopic expression of PG-1 in mice confers enhanced resistance to bacterial infection, laying the foundation for the development of livestock with improved resistance to infection.
  Cheryl M. Cameron , Mark J. Cameron , Jesus F. Bermejo-Martin , Longsi Ran , Luoling Xu , Patricia V. Turner , Ran Ran , Ali Danesh , Yuan Fang , Pak-Kei M. Chan , Nutan Mytle , Timothy J. Sullivan , Tassie L. Collins , Michael G. Johnson , Julio C. Medina , Thomas Rowe and David J. Kelvin
  How viral and host factors contribute to the severe pathogenicity of the H5N1 subtype of avian influenza virus infection in humans is poorly understood. We identified three clusters of differentially expressed innate immune response genes in lungs from H5N1 (A/Vietnam/1203/04) influenza virus-infected ferrets by oligonucleotide microarray analysis. Interferon response genes were more strongly expressed in H5N1-infected ferret lungs than in lungs from ferrets infected with the less pathogenic H3N2 subtype. In particular, robust CXCL10 gene expression in H5N1-infected ferrets led us to test the pathogenic role of signaling via CXCL10`s cognate receptor, CXCR3, during H5N1 influenza virus infection. Treatment of H5N1-infected ferrets with the drug AMG487, a CXCR3 antagonist, resulted in a reduction of symptom severity and delayed mortality compared to vehicle treatment. We contend that unregulated host interferon responses are at least partially responsible for the severity of H5N1 infection and provide evidence that attenuating the CXCR3 signaling pathway improves the clinical course of H5N1 infection in ferrets.
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility