Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by P. M Vanhoutte
Total Records ( 2 ) for P. M Vanhoutte
  Y Wang , Y Huang , K. S.L Lam , Y Li , W. T Wong , H Ye , C. W Lau , P. M Vanhoutte and A. Xu
  Aims

Endothelial dysfunction is a key event that links obesity, diabetes, hypertension, and cardiovascular diseases. The aim of the present study was to examine the protective effect of the alkaloid drug berberine against hyperglycemia-induced cellular injury and endothelial dysfunction.

Methods and results

In both cultured endothelial cells and blood vessels isolated from rat aorta, berberine concentration dependently enhanced phosphorylation of endothelial nitric oxide synthase (eNOS) at Ser1177 and promoted the association of eNOS with heat shock protein 90 (HSP90), leading to an increased production of nitric oxide. Furthermore, berberine attenuated high glucose-induced generation of reactive oxygen species, cellular apoptosis, nuclear factor-B activation, and expression of adhesion molecules, thus suppressing monocyte attachment to endothelial cells. In mouse aortic rings, berberine elicited endothelium-dependent vasodilatations and alleviated high glucose-mediated endothelial dysfunction. All these beneficial effects of berberine on the endothelium were abolished by either pharmacological inhibition of adenosine monophosphate-activated protein kinase (AMPK) or adenovirus-mediated overexpression of a dominant negative version of AMPK.

Conclusion

Berberine protects against endothelial injury and enhances the endothelium-dependent vasodilatation, which is mediated in part through activation of the AMPK signalling cascade. Berberine or its derivatives may be useful for the treatment and/or prevention of endothelial dysfunction associated with diabetes and cardiovascular disease.

  W. T Wong , X. Y Tian , Y Chen , F. P Leung , L Liu , H. K Lee , C. F Ng , A Xu , X Yao , P. M Vanhoutte , G. L Tipoe and Y. Huang
  Rationale:

Bone morphogenic protein (BMP)4 can stimulate superoxide production and exert proinflammatory effects on the endothelium. The underlying mechanisms of how BMP4 mediates endothelial dysfunction and hypertension remain elusive.

Objective:

To elucidate the cellular pathways by which BMP4-induced endothelial dysfunction is mediated through oxidative stress–dependent upregulation of cyclooxygenase (COX)-2.

Methods and Results:

Impaired endothelium-dependent relaxations, exaggerated endothelium-dependent contractions, and reactive oxygen species (ROS) production were observed in BMP4-treated mouse aortae, which were prevented by the BMP4 antagonist noggin. Pharmacological inhibition with thromboxane prostanoid receptor antagonist or COX-2 but not COX-1 inhibitor prevented BMP4-induced endothelial dysfunction, which was further confirmed with the use of COX-1–/– or COX-2–/– mice. Noggin and knockdown of BMP receptor 1A abolished endothelium-dependent contractions and COX-2 upregulation in BMP4-treated aortae. Apocynin and tempol treatment were effective in restoring endothelium-dependent relaxations, preventing endothelium-dependent contractions and eliminating ROS overproduction and COX-2 overexpression in BMP4-treated aortae. BMP4 increased p38 mitogen-activated protein kinase (MAPK) activity through a ROS-sensitive mechanism and p38 MAPK inhibitor prevented BMP4-induced endothelial dysfunction. COX-2 inhibition blocked the effect of BMP4 without affecting BMP4-induced ROS overproduction and COX-2 upregulation. Importantly, renal arteries from hypertensive rats and humans showed higher levels of COX-2 and BMP4 accompanied by endothelial dysfunction.

Conclusions:

We show for the first time that ROS serve as a pathological link between BMP4 stimulation and the downstream COX-2 upregulation in endothelial cells, leading to endothelial dysfunction through ROS-dependent p38 MAPK activation. This BMP4/ROS/COX-2 cascade is important in the maintenance of endothelial dysfunction in hypertension.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility