Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by P. C. K. Leung
Total Records ( 7 ) for P. C. K. Leung
  Q Huang , A. P Cheung , Y Zhang , H. F Huang , N Auersperg and P. C. K. Leung
 

GDF-9 stimulates granulosa cell proliferation and plays important roles during folliclogenesis. However, its molecular mechanisms are still far from clear, particularly its roles in human granulosa cells around the periovulatory stage. Therefore, we investigated the effects of GDF-9 on cell cycle distribution, regulatory molecules, and signaling pathways involved in human luteinized granulosa (hLG) cells in vitro. Primary cultures of hLG cells obtained from women undergoing IVF and treated with and without recombinant GDF-9 were evaluated with and without a specific inhibitor to activin receptor-like kinase 5 (ALK5; SB-431542), ERK42/44 (PD-098059), or Smad3 (SIS3). Cell proliferation, cell cycle distribution, mRNA expression, and protein expression of relevant cell cycle molecules were determined by [3H]thymidine incorporation, flow cytometry, quantitative PCR, and immunoblotting, respectively. GDF-9 stimulated [3H]thymidine incorporation, enhanced cell transition from G0/G1 to S and G2/M phases (whereas both SB-431542 and PD-098059 attenuated these changes), increased mRNA and protein expression of cyclin D1 and E, and decreased those of the cyclin-dependent kinase (CDK) inhibitors p15INK4B and p16INK4A. GDF-9 also activated Rb protein (a critical G1 to S-phase regulator), ERK42/44, and Smad3. PD-098059 blocked Rb protein phorsphorylation and the increase in cyclin D1 and E but not the decrease in p15INK4B and p16INK4A induced by GDF-9. In contrast, SIS3 reversed the decrease in p15INK4B and p16INK4A but not the increase in cyclin D1 and E induced by GDF-9. GDF-9 stimulates hLG cell proliferation by stimulating cyclin D1 and E and suppressing p15INK4B and p16INK4A via both Smad-dependent and Smad-independent pathways.

  J Liu , C. D MacCalman , Y. l Wang and P. C. K. Leung
 

The potential roles of GnRH I and GnRH II have been assigned in promoting the invasive capacity of human trophoblasts by regulating matrix metalloproteinases-2 and -9, type I tissue inhibitor of matrix metalloproteinase, and urokinase plasminogen activator/plasminogen activator inhibitor protease systems during human placentation, and GnRH II has been shown to be more potent than GnRH I. However, the mechanisms for the differential effects of these two hormones remain unclear. In this study, we examined the invasion-promoting effects and the signaling pathways of GnRH I and GnRH II in human trophoblasts. The data revealed that both GnRH I and GnRH II were key autocrine and/or paracrine regulators in facilitating trophoblast invasion. The GnRH receptor antagonist (Antide) and specific small interfering RNA for GnRH receptor inhibited the regulatory effects of GnRH I, but not GnRH II, on trophoblast invasion. Both GnRH I and II activated protein kinase C, ERK1/2, and c-Jun N-terminal kinase to mediate their effects on trophoblast invasion, whereas only GnRH II elicited invasion-promoting action through transactivating the tyrosine kinase activity of epidermal growth factor receptor in trophoblasts. Our observations elucidate a ligand-dependent selective cross-communication between GnRH receptor and epidermal growth factor receptor signaling systems in human trophoblastic cell, and this would further our understanding on the differentially biological significance of these two forms of GnRH in extrapituitary tissues.

  S. L Poon , G. T Hammond and P. C. K. Leung
 

GnRH-II modulates ovarian cancer cells invasion and is expressed in normal ovary and ovarian epithelial cancer cells; however, the upstream regulator(s) of GnRH-II expression in these cells remains unclear. We now demonstrate that epidermal growth factor (EGF) increases GnRH-II mRNA levels in several human ovarian carcinoma cell lines and up-regulates GnRH-II promoter activity in OVCAR-3 cells in a dose-dependent manner, whereas an EGF receptor inhibitor (AG148) abolishes EGF-induced increases in GnRH-II promoter activity and GnRH-II mRNA levels. EGF increases the phosphorylation of cAMP-responsive element-binding protein (p-CREB) and its association with the coregulator, CCAAT/enhancer binding protein β, whereas blocking the EGF-induced ERK1/2 phosphorylation with MAPK inhibitors (PD98059/U0126) markedly reduced these effects. Moreover, depletion of CREB using small interfering RNA attenuated EGF-induced GnRH-II promoter activity. Chromatin immunoprecipitation assays demonstrated that EGF induces p-CREB binding to a cAMP responsive-element within the GnRH-II promoter, likely in association with CCAAT/enhancer binding protein β, and mutagenesis of this cAMP responsive-element prevented EGF-induced GnRH-II promoter activity in OVCAR-3 cells. Importantly, GnRH-II acts additively with EGF to promote invasion of OVCAR-3 and CaOV-3 cells, but not SKOV-3 cells that express low levels of GnRH receptor (GnRHR). Treatment with GnRHR small interfering RNA also partially inhibited the EGF-induced invasion of OVCAR-3 and CaOV-3 cells. Furthermore, EGF treatment transiently increases GnRHR levels in OVCAR-3 and CaOV-3, which likely accentuates the effects of increase GnRH-II production on cell invasion. These results provide evidence that EGF is an upstream regulator of the autocrine actions of GnRH-II on the invasive properties of ovarian cancer cells.

  J. C Cheng , C Klausen and P. C. K. Leung
 

In ovarian cancer, it has been shown that E-cadherin is down-regulated by epidermal growth factor (EGF) receptor (EGFR) activation, and that cells with low E-cadherin expression are particularly invasive. Although it is generally believed that reactive oxygen species play important roles in intracellular signal transduction, the role of reactive oxygen species in EGF-mediated reductions in E-cadherin remains to be elucidated. In this study, we show that EGF treatment down-regulated E-cadherin by up-regulating its transcriptional repressors, Snail and Slug, in human ovarian cancer cells. Using 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate acetyl ester staining, we found that intracellular hydrogen peroxide (H2O2) production was increased in EGF-treated cells and could be inhibited by treatment with an EGFR inhibitor, AG1478, or an H2O2 scavenger, polyethylene glycol (PEG)-catalase. In addition, PEG-catalase diminished EGF-induced p38 MAPK, but not ERK1/2 or c-Jun N-terminal kinase, phosphorylation. PEG-catalase and the p38 MAPK inhibitor SB203580 abolished EGF-induced Snail, but not Slug, expression and E-cadherin down-regulation. Furthermore, the involvement of p38 MAPK in the down-regulation of E-cadherin was confirmed using specific p38 MAPK small interfering RNA. Finally, we also show that EGF-induced cell invasion was abolished by treatment with PEG-catalase and SB203580, as well as p38 MAPK small interfering RNA, and that forced expression of E-cadherin diminished intrinsic invasiveness as well as EGF-induced cell invasion. This study demonstrates a novel mechanism in which EGF down-regulates E-cadherin expression through production of H2O2, activation of p38 MAPK, and up-regulation of Snail in human ovarian cancer cells.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility