Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by P Zhu
Total Records ( 2 ) for P Zhu
  G. L Weibel , M. R Joshi , E. T Alexander , P Zhu , I. A Blair and G. H. Rothblat
 

Objective— The purpose of this study was to determine the effect of 15-lipoxygenase-1 (15-LO-1) on cholesterol mobilization from macrophages.

Methods and Results— Overexpression of human 15-LO-1 in RAW mouse macrophages led to enhanced cholesterol efflux, increased cholesteryl ester (CE) hydrolysis, and increased reverse cholesterol transport (RCT). Efflux studies comparing 15-LO-1 overexpressing cells to mock-transfected RAW macrophages resulted in a 3- to 7-fold increase in cholesterol efflux to apolipoprotein A-I and a modest increase in efflux to HDL. Additional experiments revealed an increase in mRNA and protein levels of ABCA1 and ABCG1 in the RAW expressing 15-LO-1 compared to controls. Efforts to examine whether the arachidonic acid metabolite of 15-LO-1, (15S)-hydroxyeicosatetraenoic acid (HETE), was responsible for the enhanced efflux revealed this eicosanoid metabolite did not play a role. Enhanced steryl ester hydrolysis was observed in 15-LO-1 overexpressing cells suggesting that the CE produced in the 15-LO-1 expressing cells was readily mobilized. To measure RCT, RAW macrophages overexpressing 15-LO-1 or mock-transfected cells were cholesterol enriched by exposure to acetylated low-density lipoprotein and [3H]-cholesterol. These macrophages were injected into wild-type animals and RCT was measured as a percent of injected dose of 3H appearing in the feces at 48 hours. We found 7% of the injected 3H in the feces of mice that received macrophages overexpressing 15-LO-1 and 4% in the feces of mice that received mock-transfected cells.

Conclusions— These data are consistent with a model in which overexpression of human 15-LO-1 in RAW macrophages promotes RCT through increased CE hydrolysis and ABCA1-mediated cholesterol efflux.

  F. L Xiang , X Lu , L Hammoud , P Zhu , P Chidiac , J Robbins and Q. Feng
 

Background— Soluble stem cell factor (SCF) has been shown to mobilize bone marrow stem cells and improve cardiac repair after myocardial infarction (MI). However, the effect of membrane-associated SCF on cardiac remodeling after MI is not known. The present study investigated the effects of cardiomyocyte-specific overexpression of the membrane-associated isoform of human SCF (hSCF) on cardiac function after MI.

Methods and Results— A novel mouse model with tetracycline-inducible and cardiac-specific overexpression of membrane-associated hSCF was generated. MI was induced by left coronary artery ligation. Thirty-day mortality after MI was decreased in hSCF/tetracycline transactivator (tTA) compared with wild-type mice. In vivo cardiac function was significantly improved in hSCF/tTA mice at 5 and 30 days after MI compared with wild-type mice. Endothelial progenitor cell recruitment and capillary density were increased and myocardial apoptosis was decreased in the peri-infarct area of hSCF/tTA mice. Myocyte size was decreased in hSCF/tTA mice 30 days after MI compared with WT mice. Furthermore, hSCF overexpression promoted de novo angiogenesis as assessed by matrigel implantation into the left ventricular myocardium.

Conclusions— Cardiomyocyte-specific overexpression of hSCF improves myocardial function and survival after MI. These beneficial effects of hSCF may result from increases in endothelial progenitor cell recruitment and neovascularization and decreases in myocardial apoptosis and cardiac remodeling.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility