Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by O Pontes
Total Records ( 3 ) for O Pontes
  X. J He , Y. F Hsu , S Zhu , H. L Liu , O Pontes , J Zhu , X Cui , C. S Wang and J. K. Zhu

RNA-directed DNA methylation (RdDM) is a conserved mechanism for epigenetic silencing of transposons and other repetitive elements. We report that the rdm4 (RNA-directed DNA Methylation4) mutation not only impairs RdDM, but also causes pleiotropic developmental defects in Arabidopsis. Both RNA polymerase II (Pol II)- and Pol V-dependent transcripts are affected in the rdm4 mutant. RDM4 encodes a novel protein that is conserved from yeast to humans and interacts with Pol II and Pol V in plants. Our results suggest that RDM4 functions in epigenetic regulation and plant development by serving as a transcriptional regulator for RNA Pol V and Pol II, respectively.

  I. R Searle , O Pontes , C. W Melnyk , L. M Smith and D. C. Baulcombe

JMJ14 is a histone H3 Lys4 (H3K4) trimethyl demethylase that affects mobile RNA silencing in an Arabidopsis transgene system. It also influences CHH DNA methylation, abundance of endogenous transposon transcripts, and flowering time. JMJ14 acts at a point in RNA silencing pathways that is downstream from RNA-dependent RNA polymerase 2 (RDR2) and Argonaute 4 (AGO4). Our results illustrate a link between RNA silencing and demethylation of histone H3 trimethylysine. We propose that JMJ14 acts downstream from the Argonaute effector complex to demethylate histone H3K4 at the target of RNA silencing.

  O Pontes , P Costa Nunes , P Vithayathil and C. S. Pikaard

In Arabidopsis, pericentromeric repeats, retroelements, and silenced rRNA genes are assembled into heterochromatin within nuclear structures known as chromocenters. The mechanisms governing higher-order heterochromatin organization are poorly understood but 24-nt small interfering RNAs (siRNAs) are known to play key roles in heterochromatin formation. Nuclear RNA polymerase IV (Pol IV), RNA-DEPENDENT RNA POLYMERASE 2 (RDR2), and DICER-LIKE 3 (DCL3) are required for biogenesis of 24-nt siRNAs that associate with ARGONAUTE 4 (AGO4). Nuclear RNA polymerase V (Pol V) collaborates with DRD1 (DEFICIENT IN RNA-DEPENDENT DNA METHYLATION 1) to generate transcripts at heterochromatic loci that are hypothesized to bind to siRNA-AGO4 complexes and subsequently recruit the de-novo DNA methylation and/or histone modifying machinery. Here, we report that decondensation of the major pericentromeric repeats and depletion of the heterochromatic mark histone H3 lysine 9 dimethylation at chromocenters occurs specifically in pol V and drd1 mutants. Disruption of pericentromeric repeats condensation is coincident with transcriptional reactivation of specific classes of pericentromeric 180-bp repeats. We further demonstrate that Pol V functions independently of Pol IV, RDR2, and DCL3-mediated siRNA production to affect interphase heterochromatin organization, possibly by involving RNAs that recruit structural or chromatin-modifying proteins.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility