Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by N. Samat
Total Records ( 3 ) for N. Samat
  P. Abdeshahian , N. Samat and W.M. Wan Yusoff
  The production of β-glucosidase by Aspergillus niger FTCC 5003 from palm kernel cake as a substrate was studied in solid substrate fermentation using a laboratory column bioreactor. The simultaneous effects of three independent variables, namely incubation temperature, initial moisture content of substrate and airflow rate on the production of β-glucosidase were evaluated using response surface methodology on the basis of a central composite face-centered design. A total of 18 experiments were carried out in which Aspergillus niger FTCC 5003 was cultivated on PKC in an aerated column bioreactor for 7 days under incubation temperature, moisture level and aeration rate determined. Experimental results showed that the highest activity of β-glucosidase (52.06 U g-1) was obtained at an incubation temperature, an initial moisture level and an aeration rate of 32.5°C, 60% and 1.5 L min-1, respectively. Statistical analysis revealed that the quadratic terms of incubation temperature and initial moisture content had highly significant effects on the production of β-glucosidase (p<0.01). The statistical results also showed that the interaction effect between initial moisture level and aeration rate significantly influenced the production of β-glucosidase (p<0.05). Optimum conditions suggested by the second-order polynomial regression model for attaining maximum β-glucosidase production were 31.6°C incubation temperature, 57.0% initial moisture and 0.5 L min-1 aeration rate with a predicted production value of 47.20 U g-1.
  P. Abdeshahian , N. Samat and W.M. Wan Yusoff
  Aspergillus niger FTCC 5003 was cultivated on palm kernel cake as a substrate to produce β-xylosidase in solid substrate fermentation. The concurrent effects of three independent variables, including incubation temperature, initial moisture content of substrate and airflow rate on the production of β-xylosidase were studied by response surface methodology. A number of 18 trials were carried out in which solid cultivation of substrate was performed in an aerated packed-bed bioreactor for 7 days. Experimental results showed that the highest activity of β-xylosidase (6.13 U g-1) was obtained at an incubation, an initial moisture level and an aeration rate of 32.5°C, 60% and 1.5 L min-1, respectively. Statistical analysis revealed that the quadratic terms of incubation temperature and initial moisture content had highly significant effects on the production of β-xylosidase (p<0.01). Optimum conditions suggested by the statistical model for the production of β-xylosidase were 32.3°C incubation temperature, 59.7% initial moisture and 0.5 L min-1 aeration rate for attaining a predicted production level of 5.32 U g-1.
  P. Abdeshahian , N. Samat and W.M. Wan Yusoff
  The production of xylanase from palm kernel cake as a substrate was studied in solid substrate fermentation. The simultaneous effects of three independent variables, namely incubation temperature, initial moisture content of substrate and air flow rate on xylanase production were evaluated by response surface methodology using central composite face centered design. A total of 18 experiments were carried out in which Aspergillus niger FTCC 5003 was cultivated on palm kernel cake in a column bioreactor for 7 days under incubation temperature, moisture level and aeration rate determined. Test results showed that the highest xylanase activity of 174.88 U g-1 was produced at incubation temperature, initial moisture level and aeration rate of 25°C, 60% and 1.5 L min-1, respectively. The statistical analysis of the experimental results revealed that the linear effect of incubation temperature and quadratic term of initial moisture content had highly significant effects on xylanase production (p<0.01). Statistical results also showed that interaction effect between incubation temperature and initial moisture content as well as interaction effect between moisture level and aeration rate influenced the yield of xylanase at probability levels of 95%. Optimum conditions determined by statistical model for attaining maximum xylanase production were incubation temperature of 25°C, initial moisture level of 63% and aeration rate of 1.76 L min-1. The xylanase activity of 192.50 U g-1 was obtained when solid substrate fermentation was performed under the optimal circumstances.
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility