Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by N. Maeda
Total Records ( 2 ) for N. Maeda
  H Tomita , S Zhilicheva , S Kim and N. Maeda
 

Rationale: Apolipoprotein E-null mice with a 129S6/SvEvTac strain background (129-apoE) develop atherosclerotic plaques faster in the aortic arch but slower in the aortic root than those with a C57BL/6J background (B6-apoE). The shape of the aortic arch also differs in the 2 strains.

Objective: Because circulating plasma factors are the same at both locations, we tested the hypothesis that genetic factors affecting vascular geometry also affect the location and extent of atherosclerotic plaque development.

Methods and Results: Tests on the F2 progeny from a cross between 129-apoE-null and B6-apoE-null mice showed that the extent of atherosclerosis in the aortic arch is significantly correlated in males, but not in females, with the shape of arch curvature (r=0.34, P<0.0001) and weakly with the arch diameter (r=0.20, P=0.02). Quantitative trait locus (QTL) analysis identified 2 significant peaks for aortic arch lesion size on chromosome 1 (105 Mb, LOD=5.0, and 163 Mb, LOD=6.8), and a suggestive QTL on chromosome 15 (96 Mb, LOD=4.7). A significant QTL for aortic root lesion size was on chromosome 9 (61 Mb, LOD=6.9), but it was distinct from the QTLs for arch lesion size. Remarkably, the QTLs for susceptibility to atherosclerosis in the arch overlapped with a significant QTL that affects curvature of the arch on chromosome 1 (121 Mb, LOD=5.6) and a suggestive QTL on chromosome 15 (76 Mb, LOD=3.5).

Conclusions: The overlapping QTLs for curvature of the aortic arch and atherosclerosis support that the ontogeny of the aortic arch formation is a potential risk factor for atherosclerosis.

  Y. S Tsai , P. J Tsai , M. J Jiang , T. Y Chou , A Pendse , H. S Kim and N. Maeda
 

Mutations and polymorphisms in PPARG have been linked to adiposity and partial lipodystrophy in humans. However, how disturbances in PPARG lead to depot-specific effects on adipose tissue, as shown by the characteristic aberrant fat distribution in patients, remains unclear. By manipulating the 3'-untranslated region of the Pparg gene, we have generated mice with peroxisome proliferator-activated receptor (PPAR) gene expression ranging from 25% to 100% normal. Basal levels of PPAR transcripts between 50% and approximately 100% had no significant effect on body weight, fat mass, and insulin sensitivity. In contrast, mice with 25% normal PPAR expression exhibited reduced body weight and total fat mass, insulin resistance, and dyslipidemia. Interestingly, fat mass was selectively reduced in perigonadal depot without significant changes in inguinal and other depots. Expression of adipogenic factor CCAAT enhancer binding protein- and some other metabolic genes containing peroxisome proliferator response element were reduced in a perigonadal depot-specific fashion. This was further associated with depot-specific reduction in the expression of adipokines, increased expression of TNF, and increased ectopic lipid deposition in muscles. Together, these results underscore the differential sensitivity of the individual fat depots on PPAR availability as an underlying mechanism of partial lipodystrophy.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility