Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by N Wang
Total Records ( 10 ) for N Wang
  C Bian , F Zhang , F Wang , Z Ling , M Luo , H Wu , Y Sun , J Li , B Li , J Zhu , L Tang , Y Zhou , Q Shi , Y Ji , L Tian , G Lin , Y Fan , N Wang and B. Sun
 

DNA immunization is an efficient method for high-affinity monoclonal antibody generation. Here, we describe the generation of several high-quality monoclonal antibodies (mAbs) against retinol-binding protein 4 (RBP4), an important marker for kidney abnormality and dysfunction, with a combination method of DNA priming and protein boost. The mAbs generated could bind to RBP4 with high sensitivity and using these mAbs, an immunocolloidal gold fast test strip was constructed. The strip can give a result in <5 min and is very sensitive with a detection limit of about 1 ng/ml. A small-scale clinical test revealed that the result of this strip was well in accordance with that of an enzyme-labeled immunosorbent assay kit currently available on the market. Consequently, it could be useful for more convenient and faster RBP4 determination in the clinic.

  L. A Davidson , N Wang , I Ivanov , J Goldsby , J. R Lupton and R. S. Chapkin
 

With respect to functional mapping of gene expression signatures, the steady-state mRNA expression level does not always accurately reflect the status of critical signaling proteins. In these cases, control is exerted at the epigenetic level of recruitment of mRNAs to polysomes, the factories of ribosomes that mediate efficient translation of many cellular messages. However, to date, a genome-wide perspective of the effect of carcinogen and chemoprotective bioactive diets on actively translated (polysomal) mRNA populations has not been done. Therefore, we used an established colon cancer model, i.e., the azoxymethane (AOM)-treated rat, in combination with a chemoprotective diet extensively studied in our laboratory, i.e., n-3 polyunsaturated fatty acids, to characterize the molecular processes underlying the transformation of normal colonic epithelium. The number of genes affected by AOM treatment 10 weeks after carcinogen injection was significantly greater in the polysome RNA fraction compared with the total RNA fraction as determined using a high-density microarray platform. In particular, polysomal loading patterns of mRNAs associated with the Wnt-β catenin, phospholipase A2-eicosanoid and the mitogen-activated protein kinase signaling axes were significantly upregulated at a very early period of tumor development in the colon. These data indicate that translational alterations are far more extensive relative to transcriptional alterations in mediating malignant transformation. In contrast, transcriptional alterations were found to be more extensive relative to translational alterations in mediating the effects of diet. Therefore, during early stage colonic neoplasia, diet and carcinogen seem to predominantly regulate gene expression at multiple levels via unique mechanisms.

  L. A Davidson , N Wang , M. S Shah , J. R Lupton , I Ivanov and R. S. Chapkin
 

We have hypothesized that dietary modulation of intestinal non-coding RNA [microRNA (miRNA)] expression may contribute to the chemoprotective effects of nutritional bioactives (fish oil and pectin). To fully understand the effects of these agents on the expression of miRNAs, Sprague–Dawley rats were fed diets containing corn oil or fish oil with pectin or cellulose and injected with azoxymethane (AOM, a colon-specific carcinogen) or saline (control). Real-time polymerase chain reaction using miRNA-specific primers and Taq ManTM probes was carried out to quantify effects on miRNA expression in colonic mucosa. From 368 mature miRNAs assayed, at an early stage of cancer progression (10 week post AOM injection), let-7d, miR-15b, miR-107, miR-191 and miR-324-5p were significantly (P < 0.05) affected by diet x carcinogen interactions. Overall, fish oil fed animals exhibited the smallest number of differentially expressed miRNAs (AOM versus saline treatment). With respect to the tumor stage (34 week post AOM injection), 46 miRNAs were dysregulated in adenocarcinomas compared with normal mucosa from saline-injected animals. Of the 27 miRNAs expressed at higher (P < 0.05) levels in tumors, miR-34a, 132, 223 and 224 were overexpressed at >10-fold. In contrast, the expression levels of miR-192, 194, 215 and 375 were dramatically reduced (≤0.32-fold) in adenocarcinomas. These results demonstrate for the first time the utility of the rat AOM model and the novel role of fish oil in protecting the colon from carcinogen-induced miRNA dysregulation.

  Y Lu , Y Zhang , N Wang , Z Pan , X Gao , F Zhang , H Shan , X Luo , Y Bai , L Sun , W Song , C Xu , Z Wang and B. Yang
  Background—

A characteristic of both clinical and experimental atrial fibrillation (AF) is atrial electric remodeling associated with profound reduction of L-type Ca2+ current and shortening of the action potential duration. The possibility that microRNAs (miRNAs) may be involved in this process has not been tested. Accordingly, we assessed the potential role of miRNAs in regulating experimental AF.

Methods and Results—

The miRNA transcriptome was analyzed by microarray and verified by real-time reverse-transcription polymerase chain reaction with left atrial samples from dogs with AF established by right atrial tachypacing for 8 weeks and from human atrial samples from AF patients with rheumatic heart disease. miR-223, miR-328, and miR-664 were found to be upregulated by >2 fold, whereas miR-101, miR-320, and miR-499 were downregulated by at least 50%. In particular, miR-328 level was elevated by 3.9-fold in AF dogs and 3.5-fold in AF patients relative to non-AF subjects. Computational prediction identified CACNA1C and CACNB1, which encode cardiac L-type Ca2+ channel 1c- and β1 subunits, respectively, as potential targets for miR-328. Forced expression of miR-328 through adenovirus infection in canine atrium and transgenic approach in mice recapitulated the phenotypes of AF, exemplified by enhanced AF vulnerability, diminished L-type Ca2+ current, and shortened atrial action potential duration. Normalization of miR-328 level with antagomiR reversed the conditions, and genetic knockdown of endogenous miR-328 dampened AF vulnerability. CACNA1C and CACNB1 as the cognate target genes for miR-328 were confirmed by Western blot and luciferase activity assay showing the reciprocal relationship between the levels of miR-328 and L-type Ca2+ channel protein subunits.

Conclusions—

miR-328 contributes to the adverse atrial electric remodeling in AF through targeting L-type Ca2+ channel genes. The study therefore uncovered a novel molecular mechanism for AF and indicated miR-328 as a potential therapeutic target for AF.

  M. C Tsai , L Chen , J Zhou , Z Tang , T. F Hsu , Y Wang , Y. T Shih , H. H Peng , N Wang , Y Guan , S Chien and J. J. Chiu
 

Rationale: Phenotypic modulation of smooth muscle cells (SMCs), which are located in close proximity to endothelial cells (ECs), is critical in regulating vascular function. The role of flow-induced shear stress in the modulation of SMC phenotype has not been well defined.

Objective: The objective was to elucidate the role of shear stress on ECs in modulating SMC phenotype and its underlying mechanism.

Methods and Results: Application of shear stress (12 dyn/cm2) to ECs cocultured with SMCs modulated SMC phenotype from synthetic to contractile state, with upregulation of contractile markers, downregulation of proinflammatory genes, and decreased percentage of cells in the synthetic phase. Treating SMCs with media from sheared ECs induced peroxisome proliferator-activated receptor (PPAR)-, -, and - ligand binding activities; transfecting SMCs with specific small interfering (si)RNAs of PPAR- and -, but not -, inhibited shear induction of contractile markers. ECs exposed to shear stress released prostacyclin (PGI2). Transfecting ECs with PGI2 synthase-specific siRNA inhibited shear-induced activation of PPAR-/, upregulation of contractile markers, downregulation of proinflammatory genes, and decrease in percentage of SMCs in synthetic phase. Mice with PPAR- deficiency (compared with control littermates) showed altered SMC phenotype toward a synthetic state, with increased arterial contractility in response to angiotensin II.

Conclusions: These results indicate that laminar shear stress induces synthetic-to-contractile phenotypic modulation in SMCs through the activation of PPAR-/ by the EC-released PGI2. Our findings provide insights into the mechanisms underlying the EC-SMC interplays and the protective homeostatic function of laminar shear stress in modulating SMC phenotype.

  I. K. L Tan , L Mackin , N Wang , A. T Papenfuss , C. M Elso , M. P Ashton , F Quirk , B Phipson , M Bahlo , T. P Speed , G. K Smyth , G Morahan and T. C. Brodnicki
 

More than 25 loci have been linked to type 1 diabetes (T1D) in the nonobese diabetic (NOD) mouse, but identification of the underlying genes remains challenging. We describe here the positional cloning of a T1D susceptibility locus, Idd11, located on mouse chromosome 4. Sequence analysis of a series of congenic NOD mouse strains over a critical 6.9-kb interval in these mice and in 25 inbred strains identified several haplotypes, including a unique NOD haplotype, associated with varying levels of T1D susceptibility. Haplotype diversity within this interval between congenic NOD mouse strains was due to a recombination hotspot that generated four crossover breakpoints, including one with a complex conversion tract. The Idd11 haplotype and recombination hotspot are located within a predicted gene of unknown function, which exhibits decreased expression in relevant tissues of NOD mice. Notably, it was the recombination hotspot that aided our mapping of Idd11 and confirms that recombination hotspots can create genetic variation affecting a common polygenic disease. This finding has implications for human genetic association studies, which may be affected by the approximately 33,000 estimated hotspots in the genome.

  C. H Rinderknecht , N Lu , O Crespo , P Truong , T Hou , N Wang , N Rajasekaran and E. D. Mellins
 

Several MHC class II alleles linked with autoimmune diseases form unusually low-stability complexes with class II-associated invariant chain peptides (CLIP), leading us to hypothesize that this is an important feature contributing to autoimmune pathogenesis. We recently demonstrated a novel post-endoplasmic reticulum (ER) chaperoning role of the CLIP peptides for the murine class II allele I-Ed. In the current study, we tested the generality of this CLIP chaperone function using a series of invariant chain (Ii) mutants designed to have varying CLIP affinity for I-Ag7. In cells expressing these Ii CLIP mutants, I-Ag7 abundance, turnover and antigen presentation are all subject to regulation by CLIP affinity, similar to I-Ed. However, I-Ag7 undergoes much greater quantitative changes than observed for I-Ed. In addition, we find that Ii with a CLIP region optimized for I-Ag7 binding may be preferentially assembled with I-Ag7 even in the presence of higher levels of wild-type Ii. This finding indicates that, although other regions of Ii interact with class II, CLIP binding to the groove is likely to be a dominant event in assembly of nascent class II molecules with Ii in the ER.

  S Li , D Zhang , L Yang , J. V Burnier , N Wang , R Lin , E. R Lee , R. I Glazer and P. Brodt
 

The IGF-I receptor (IGF-IR) was identified as a tumor progression factor, but its role in invasion and metastasis has been the subject of some controversy. Previously we reported that in murine lung carcinoma M-27 cells, overexpression of IGF-IR increased the synthesis and activation of matrix metalloproteinase (MMP)-2 via Akt/phosphatidylinositol 3-kinase signaling. In contrast, we show here that in these and other cells, IGF-IR overexpression reduced the constitutive and phorbol 12-myristate 13-acetate (PMA)-inducible expression of three protein kinase C (PKC)-regulated metalloproteinases, MMP-3, MMP-9, and MMP-13, in cultured cells as well as in vivo in sc tumors. To elucidate the underlying mechanism, we analyzed the effect of IGF-IR on PKC expression and activity using wild-type and IGF-IR-overexpressing (M-27IGFIR) tumor cells. Our results show that overexpression and activation of IGF-IR reduced PKC- expression, PKC activity, and downstream ERK1/2 signaling, and these effects were reversed in cells expressing kinase (Y1131,1135,1136F) or C-terminal (Y1250/51F) domain mutants of IGF-IR. This reduction was due to transcriptional down-regulation of PKC- as evidenced by reduced PKC- mRNA expression in a phosphatidylinositol 3-kinase-dependent manner and a blockade of PKC- promoter activation as revealed by a reporter gene assay. Finally, reconstitution of PKC- levels could restore MMP-9 expression levels in these cells. Collectively, these results show that IGF-IR can inhibit PKC- gene transcription and thereby block the synthesis of PMA-regulated MMPs, suggesting that within the same cells, IGF-IR can act as both a positive and negative regulator of MMP expression and function.

  H Lu , H. T Leung , N Wang , W. L Pak and B. H. Shieh
  No Description
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility