Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by N Matsumoto
Total Records ( 3 ) for N Matsumoto
  D Hu , Y Kamiya , K Totani , D Kamiya , N Kawasaki , D Yamaguchi , I Matsuo , N Matsumoto , Y Ito , K Kato and K. Yamamoto

Glucosidase II (GII) is a glycan-processing enzyme that trims two 1,3-linked glucose residues from N-glycan on newly synthesized glycoproteins. Trimming of the first 1,3-linked glucose from Glc2Man9GlcNAc2 (G2M9) is important for a glycoprotein to interact with calnexin/calreticulin (CNX/CRT), and cleavage of the innermost glucose from Glc1Man9GlcNAc2 (G1M9) sets glycoproteins free from the CNX/CRT cycle and allows them to proceed to the Golgi apparatus. GII is a heterodimeric complex consisting of a catalytic subunit (GII) and a tightly associated β subunit (GIIβ) that contains a mannose 6-phosphate receptor homology (MRH) domain. A recent study has suggested a possible involvement of the MRH domain of GIIβ (GIIβ-MRH) in the glucose trimming process via its putative sugar-binding activity. However, it remains unknown whether GIIβ-MRH possesses sugar-binding activity and, if so, what role this activity plays in the function of GII. Here, we demonstrate that human GIIβ-MRH binds to high-mannose-type glycans. Frontal affinity chromatography revealed that GIIβ-MRH binds most strongly to the glycans with the 1,2-linked mannobiose structure. GII with the mutant GIIβ that lost the sugar-binding activity of GIIβ-MRH hydrolyzes p-nitrophenyl--glucopyranoside, but the capacity to remove glucose residues from G1M9 and G2M9 is significantly decreased. Our results clearly demonstrate the capacity of the GIIβ-MRH to bind high-mannose-type glycans and its importance in efficient glucose trimming of N-glycans.

  K Mikami , D Yamaguchi , H Tateno , D Hu , S. Y Qin , N Kawasaki , M Yamada , N Matsumoto , J Hirabayashi , Y Ito and K. Yamamoto

Misfolded glycoproteins are translocated from the endoplasmic reticulum (ER) into the cytoplasm for proteasome-mediated degradation. OS-9 protein is thought to participate in ER-associated glycoprotein degradation (ERAD). The recombinant biotinylated mannose 6-phosphate receptor homology (MRH) domain of human OS-9 (OS-9MRH) together with six kinds of mutated OS-9MRH were prepared and mixed with R-phycoerythrin (PE)-labeled streptavidin to form tetramers (OS-9MRH-SA). The PE-labeled OS-9MRH-SA bound to HeLaS3 cells in a metal ion-independent manner through amino acid residues homologous to those participating in sugar binding of the cation-dependent mannose 6-phosphate receptor, and this binding was greatly increased by swainsonine, deoxymannojirimycin, or kifunensine treatment. N-Acetylglucosaminyltransferase I-deficient Lec1 cells, but not Lec2 or Lec8 cells, were also strongly bound by the tetramer. OS-9MRH-SA binding to the cells was strongly inhibited by Man1,6(Man1,3)Man1,6(Man1,3)Man and Man1,6Man. To further determine the specificity of native ligands for OS-9MRH, frontal affinity chromatography was performed using a wide variety of 92 different oligosaccharides. We found that several N-glycans containing terminal 1,6-linked mannose in the Man1,6(Man1,3)Man1,6(Man1,3)Man structure were good ligands for OS-9MRH, having Ka values of approximately 104 M–1 and that trimming of either an 1,6-linked mannose from the C-arm or an 1,3-linked mannose from the B-arm abrogated binding to OS-9MRH. An immunoprecipitation experiment demonstrated that the 1-antitrypsin variant nullHong Kong, but not wild-type 1-antitrypsin, selectively interacted with OS-9 in the cells in a sugar-dependent manner. These results suggest that trimming of the outermost 1,2-linked mannose on the C-arm is a critical process for misfolded proteins to enter ERAD.

  D Yamaguchi , D Hu , N Matsumoto and K. Yamamoto

XTP3-B is a soluble endoplasmic reticulum (ER)-resident protein containing two mannose-6-phosphate receptor homology (MRH) domains in its sequence. XTP3-B interacts with a membrane-associated ubiquitin ligase complex, and, therefore, is thought to participate in ER-associated degradation (ERAD). In this study, the recombinant human XTP3-B fused with IgG-Fc (XTP3-B-Fc), XTP3-B without an N-terminal MRH domain fused with IgG-Fc (XTP3-B1-Fc), or XTP3-B without a C-terminal MRH domain fused with IgG-Fc (XTP3-B2-Fc) were prepared. XTP3-B-Fc and XTP3-B1-Fc bound to Lec1 cells but not to CHO, Lec2, or Lec8 cells, while XTP3-B2-Fc did not bind to any of these cells. The binding of XTP3-B-Fc and XTP3-B1-Fc to Lec1 cells was abrogated by treatment of the cells with endo-β-N-acetylglucosaminidase H, Man1,6Man or Man1,6(Man1,3)Man1,6(Man1,3)Man, or by substitution of Arg428 or Tyr457 in the C-terminal MRH domain with alanine. Arg428 and Tyr457 are homologous to amino acids that mediate glycan binding by the cation-dependent mannose-6-phosphate receptor. An immunoprecipitation experiment using lysates of cells co-expressing wild-type 1-antitrypsin (AT), 1-antitrypsin variant nullHong Kong (ATNHK), and FLAG-tagged XTP3-B, or its mutants, demonstrated that ATNHK, but not AT, specifically co-precipitated with XTP3-B and XTP3-B1. The glycan-binding-deficient XTP3-B2 did not bind either AT or ATNHK. These results suggest that XTP3-B specifically binds to ATNHK, which is a well-known substrate of ERAD, via a C-terminal MRH domain in a glycan-dependent manner.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility