Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by N Matsuki
Total Records ( 2 ) for N Matsuki
  R Muramatsu , S Nakahara , J Ichikawa , K Watanabe , N Matsuki and R. Koyama

Proper axonal targeting is fundamental to the establishment of functional neural circuits. The hippocampal mossy fibres normally project towards the CA3 region. In the hippocampi of patients with temporal lobe epilepsy and related animal models, however, mossy fibres project towards the molecular layer and produce the hyperexcitable recurrent networks. The cellular and molecular mechanisms underlying this aberrant axonal targeting, known as mossy fibre sprouting, remain unclear. Netrin-1 attracts or repels axons depending on the composition of its attraction-mediating receptor, deleted in colorectal cancer, and its repulsion-mediating receptor, uncoordinated-5, on the growth cone; but the roles of netrin-1-dependent guidance in pathological conditions are largely unknown. In this study, we examined the role of netrin-1 and its receptors in mossy fibre guidance and report that enhanced neuronal activity changes netrin-1-mediated cell targeting by the axons under hyperexcitable conditions. Netrin-1 antibody or Dcc ribonucleic acid interference attenuated mossy fibre growth towards CA3 in slice overlay assays. The axons were repelled from CA3 and ultimately innervated the molecular layer when hyperactivity was pharmacologically introduced. We first hypothesized that a reduction in netrin-1 expression in CA3 underlies the phenomenon, but found that its expression was increased. We then examined two possible activity-dependent changes in netrin-1 receptor expression: a reduction in the deleted in colorectal cancer receptor and induction of uncoordinated-5 receptor. Hyperactivity did not affect the surface expression of the deleted in colorectal cancer receptor on the growth cone, but it increased that of uncoordinated-5A, which was suppressed by blocking cyclic adenosine monophosphate signalling. In addition, Dcc knockdown did not affect hyperactivity-induced mossy fibre sprouting in the slice cultures, whereas Unc5a knockdown rescued the mistargeting. Thus, netrin-1 appears to attract mossy fibres via the deleted in colorectal cancer receptor, while it repels them via cyclic adenosine monophosphate-induced uncoordinated-5A under hyperexcitable conditions, resulting in mossy fibre sprouting.

  T Endo , K Kano , R Motoki , K Hama , S Okudaira , M Ishida , H Ogiso , M Tanaka , N Matsuki , R Taguchi , M Kanai , M Shibasaki , H Arai and J. Aoki

Lysophosphatidic acid (LPA) is a simple phospholipid but has numerous biological effects through a series of G-protein-coupled receptors specific to LPA. In general, LPA is short-lived when applied in vivo, which hinders most pharmacological experiments. In our continuing study to identify stable LPA analogues capable of in vivo applications, we identified here lysophosphatidylmethanol (LPM) as a stable and pan-LPA receptor agonist. A synthetic LPM activated all five LPA receptors (LPA1–5), and stimulates both cell proliferation and LPA-receptor-dependent cell motility. In addition, LPM showed a hypertensive effect in rodent when applied in vivo. We found that, when fetal calf serum was incubated in the presence of methanol, formation of LPM occurred rapidly, whereas it was completely blocked by depletion of autotaxin (ATX), a plasma enzyme that converts lysophosphatidylcholine (LPC) to LPA. When recombinant ATX was incubated with LPC in the presence of methanol, both LPM and LPA were produced with a ratio of 1:10, showing that ATX has transphosphatidylation activity in addition to its lysophospholipase D activity. Administration of methanol in mice resulted in the formation of several micromoles of LPM in plasma, which is much higher than that of LPA. The present study identified LPM as a novel and stable lysophospholipid mediator with LPA-like activities and ATX as a potential synthetic enzyme for LPM.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility