Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by Mojahid Sid Ahmed Mohammed Salih Ahmed
Total Records ( 2 ) for Mojahid Sid Ahmed Mohammed Salih Ahmed
  Mojahid Sid Ahmed Mohammed Salih Ahmed and Syed Ihtsham Ul-Haq Gilani
  Owing to the serious environmental problems and the price of the traditional energy resources the use of industrial waste heat or renewable energy, as the driving force for vapour absorption cooling systems is continuously increasing. A steady-state model is developed to predict the performance of an absorption refrigeration system using LiBr-water as working pair. Each component of the cycle is modelled based on mass and energy balances. The design point parameters are determined. The refrigeration effect, coefficient of performance (cop) and load factor are analysed for different heat input. Simulation is carried out and the results are compared with actual data and showed good agreement.
  Mojahid Sid Ahmed Mohammed Salih Ahmed and Syed Ihtsham Ul-Haq Gilani
  Exergy analysis of a double-effect parallel flow commercial absorption chiller is presented in this study. Generally a major obstacle for developing model of a commercial absorption chiller is lack of available component specifications. These specifications are commonly proprietary of the chillers manufacturers and normally the available information is not sufficient. This study presented a double-effect parallel-flow-type steam absorption chiller model based on mass and energy equations. The chiller studied is 1250 RT (Refrigeration Tons) using lithium bromide-water solution as working pair. For refrigerant and absorbent properties, set of efficient formulations are used. The model gives the required information about temperature, concentration, entropy, exergy and flow rate at each state point of the system. The model calculates the heat load at each component as well as the performance of the system. The profile of the exergy destructions for various components is plotted against the heat load in the range of 20-100% of cooling capacity. The results showed that the high temperature generator has the greatest exergy destruction followed by the absorber and high temperature solution heat exchanger. Further, it was found that the Coefficient of Performance (COP) increased with increasing with load factor. However, the exergetic efficiency was found to decrease while increasing the load factor.
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility