Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by Manju Singh
Total Records ( 5 ) for Manju Singh
  B.J. Stephen , S.V. Singh , Manali Datta , Neelam Jain , Sujata Jayaraman , K.K. Chaubey , S. Gupta , Manju Singh , G.K. Aseri , Neeraj Khare , Parul Yadav , Kuldeep Dhama and J.S. Sohal
  Tuberculosis, an infectious bacterial disease that affects the lungs is caused by Mycobacterium tuberculosis (MTB). It is the second most infectious disease after AIDS, which can affect both animals and humans. Johne’s Disease (JD) or paratuberculosis caused by in intracellular bacterium Mycobacterium avium subspecies paratuberculosis (MAP) is an incurable wasting disease known to affect a large number of domestic animals and poses serious threat to livestock industries through huge economic losses. Conventional diagnostic methods like enzyme linked immunosorbat assay (ELISA), Polymerase Chain Reaction (PCR), cultural isolation are identification for use in MAP detection while sputum smear microscopy and PCR techniques remain the gold standards for TB detection despite advancement in pathogen detection most of these diagnostic methods are time consuming and have low efficacy and this become a heavy burden to developing and underdeveloped countries. When nanoscale particles are used as tags or labels, measuring the activity or presence of an analyte becomes faster, flexible and highly sensitive. These advantages nanomaterials possess, research have now focused their attention to nanotechnology based detection. Though research have shown these test to be more sensitive, less laboratorious and less time consuming, more needs to be done to introduce point of care diagnostics into the global market. This review highlights the prospects of nanotechnology based diagnostic tests as valuable alternative for rapid detection of this economically important pathogen with high accuracy and precision.
  Kundan Kumar Chaubey , Shoor Vir Singh , Saurabh Gupta , Sujata Jayaraman , Manju Singh , Bjorn John Stephan , Krishna Dutta Rawat , Anjali Pachoori , Kuldeep Dhama and Ashok Kumar Bhatia
  Cross reactivity of three antigens of Mycobacterium avium subspecies paratuberculosis with sera of sheep endemic for Johne’s disease was evaluated. Out of 40 sheep tested by fecal microscopy, 72.5% were shedding MAP. Using protoplasmic antigens (PPA) from three MAP strains isolated from different livestock species and geographical regions, 90, 77.5 and 2.5% sheep were positive in goat (Indigenous g-ELISA) and cattle (b-ELISA) based ELISA kits and ELISA kit for small ruminant (sr-ELISA), respectively. Only 2.5 and 10% sheep were positive and negative in all the four tests. Native species specific (goat origin novel ‘Indian Bison Type’ MAP) semi-purified whole cell PPA based ELISA (Indigenous g-ELISA) was superior in reacting with sera of native sheep than the commercial PPA of bovine origin (Allied Monitor Inc., USA) and commercial ELISA kit for small ruminants (ID Vet, France). Lower cross reactivity of antigens originated from US and France emphasized the need to develop tests based on local strain of MAP than strains from different livestock species and geographical regions. This is an important finding against the use of ‘Global kits’ without validating in local conditions. Study showed that kits developed from local strains of MAP were not only superior but also cost effective and will significantly contribute in programs for the control of JD in native sheep population.
  B.J. Stephen , Mukta Jain , Kuldeep Dhama , S.V. Singh , Manali Datta , Neelam Jain , Sujata Jayaraman , Manju Singh , K.K. Chaubey , S. Gupta , G.K. Aseri , Neeraj Khare , Parul Yadav and J.S. Sohal
  Johne’s Disease (JD) is a contagious fatal granulomatous enteritis, known to affect ruminants and is caused by the acid-fast Mycobacterium avium subspecies paratuberculosis (MAP). The bacterium has also been linked to Crohn’s Disease (CD) in humans. Treatment options are scarce with culling practiced in the case of Johne’s Disease (JD) and administration of anti-inflammatory drugs for pain and inflammation in case of CD. In both cases antimicrobial therapy against MAP does not have the ultimate potential. The very promising, yet untapped potential of nanotechnology offers a suitable platform for developing new therapeutic strategies for diseases caused by the bacteria. Uniformity, specificity and reproducibility are some of the characteristics of nanotechnology that can be exploited for the treatment of infectious diseases. Factors like cost, efficacy, safety and bioavailability of drugs can be greatly improved when the drugs are delivered with precision and at a controlled delivery rate to the target location. Nanotechnology can help in achieving these targets. This review discusses the current scenario of available therapeutic approaches and proposes drugs targeting strategies and vaccine development methods for the treatment and prevention of MAP related diseases.
  Shoor Vir Singh , Sachin Digambar Audarya , Manju Singh , Bjorn John Stephen , Daljeet Chhabra , Kundan Kumar Chaubey , Saurabh Gupta , Sahzad , Anjali Pachoori , Sujata Jayaraman , Gajendra Kumar Aseri , Jagdip Singh Sohal , Ashok Kumar Bhatia and Kuldeep Dhama
  Johne’s disease is endemic in the domestic riverine buffalo population of the country and bio-load of Mycobacterium avium subspecies paratuberculosis is increasing in the absence of indigenous diagnostic kits and control programs. A new ‘dot-ELISA kit’ has been developed and validated with indigenous plate ELISA for the screening of buffaloes against Johne’s disease. Out of 156 serum samples screened 41.0 (64), 85.8 (134) and 85.2% (133) were positive for MAP infection by indigenous plate ELISA kit condition (A), condition (B) and indigenous dot ELISA, respectively. Dot-ELISA kit detected 85.2 (133) and 90.3% (141) buffaloes as positive together with indigenous plate ELISA kit in condition A and B, respectively. Comparison of ‘Indigenous plate-ELISA’ with ‘Indigenous dot-ELISA’ revealed substantial agreement between two tests. Study showed that ‘Indigenous dot-ELISA test’ has potential to be sensitive and cost effective ‘Field based herd screening test’ for the large scale screening of the domestic livestock population against Johne’s disease. The study also showed that despite high slaughter rate, incidence of Johne’s disease was high in native population of riverine buffaloes (Bubalus bubalis) and call for immediate control of disease.
  Amber Vyas , Sourav Kisore Das , Deependra Singh , Avinesh Sonker , Bina Gidwani , Vishal Jain and Manju Singh
  Very few drug delivery systems are potent enough to fight against cancer yet gentle enough on the body. The Nanoparticles have been successfully utilized to create a new drug delivery system for treatment of cancer. Study and application of nanoparticles is advancing rapidly within the pharmaceutical field. These nano-sized materials, e.g., “nanoparticles”, take on novel properties and functions that differ markedly from that delivery system presently available in market. The nano-size and surface improved solubility and multi-functionality of nanoparticles. This improves the quality and the biomedical applications of the nanoparticles. The skin provides a physical barrier to the harmful effects of the external environment in the body. The skin cancer appears in the upper layer of the skin. In recent years there has been an exciting increase in the prevalence of skin cancer worldwide. Non-melanoma skin cancer is the most common diagnosed cancer in the UK accounting for a quarter of all new cancer cases. It is a slow growing form of cancer and can be present many years before detection. Several obstacles frequently still encountered with the skin cancer. In general, the best way to eliminate a problem is to eliminate the cause. This article has reviewed nanoparticulate delivery system with a view as to its impact on skin cancer.
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility