Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by M. Yamaguchi
Total Records ( 4 ) for M. Yamaguchi

Flow modulation effect on N incorporation into GaAs(1-x)Nx films during chemical beam epitaxy growth

  H. Suzuki , K. Nishimura , K. Saito , Y. Ohshita , N. Kojima and M. Yamaguchi

The change in the surface concentration of N ([N]s) on a GaAs surface under N and As source injections is investigated using the N atomic layer doping (N-ALD) technique, and the key factor determining [N]s is discussed. The As and N precursors source gases are trisdimethylaminoarsenic (TDMAAs, [N(CH3)2]3As) and monomethylhydrazine (MMHy, N2H3CH3), respectively. N-ALD layers are prepared by using two gas injection sequences (A: MMHy injection and B: MMHy and TDMAAs injections). [N]s increases with decreasing growth temperature in both sequences. [N]s in sequence A is higher than that of sequence B. In sequence B, Δ[N]st is proportional to exp(–tN), where t and τN are the gas injection time and the residence time of N, respectively. It is observed that the number of vacant sites, [V]s,N, remaining constant during gas injections. In sequence A, Δ[N]st cannot be fitted by a single exponential function, indicating that [V]s,N is not constant. From these results, we suggest that the vacant sites at the surface are created not only by N desorption but also by As desorption. It has been found that As desorption is enhanced by MMHy injection. As desorption reaction has been confirmed by in situ auger electron spectroscopy measurements. These results indicate that [N]s is determined by the competitive absorption between N and As, [V]s,N, and τN.

  N. Suzuki , T. Uchida , T. Tanikawa , T. Hikosaka , Y. Honda , M. Yamaguchi and N. Sawaki

The hydride-vapour-phase-epitaxial (HVPE) growth of semi-polar (1 1 2¯ 2)GaN is attempted on a GaN template layer grown on a patterned (1 1 3) Si substrate. It is found that the chemical reaction between the GaN grown layer and the Si substrate during the growth is suppressed substantially by lowering the growth temperatures no higher than 900 °C. And the surface morphology is improved by decreasing the V/III ratio. It is shown that a 230-μm-thick (1 1 2¯ 2)GaN with smooth surface is obtained at a growth temperature of 870 °C with V/III of 14.

  T. Tanikawa , Y. Kagohashi , Y. Honda , M. Yamaguchi and N. Sawaki

Two-step selective epitaxy (SAG/ELO) of (1 1 2¯ 2)GaN on (1 1 3)Si substrate is studied to reduce the defect density in the epitaxial lateral overgrowth. The first SAG/ELO is to prepare a (1 1 2¯ 2)GaN template on a (1 1 3)Si and the second SAG/ELO is to get a uniform (1 1 2¯ 2)GaN. It is found that the reduction of the defect density is improved by optimizing the mask configuration in the second SAG/ELO. The minimum dark spot density obtained is 3x107/cm2, which is two orders of magnitude lower than that found in a (0 0 0 1)GaN grown on (1 1 1)Si.

  M. Irie , N. Koide , Y. Honda , M. Yamaguchi and N. Sawaki

Using an AlInN intermediate layer, GaN was grown on (1 1 1)Si substrate by selective metalorganic vapor phase epitaxy. The variation of the surface morphology was investigated as a function of the In composition and thickness of the AlInN layer. It was found that the In composition in the AlInN layer was a function of the growth temperature and thickness. Because of the small band offset at the AlInN/Si hetero-interface, we have achieved a low series resistance of the order of 9 Ω (0.0036 Ω cm2) across the GaN/AlInN/AlN/Si layer structure.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility